
OctoPoCs: Automatic Verification of
Propagated Vulnerable Code Using

Reformed Proofs of Concept

IEEE/IFIP DSN 2021
Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong, Heejo Lee ∗

Korea University, Korea

Code Clone and Vulnerability Propagation

2

We should determine whether the vulnerable code can be triggered

Spread?

?

known
vulnerable sw

code cloning sw

Code Clone

Verify the security of cloned code

• Existing method to solve the security problem of code clone

: vulnerable code clone detection technique

-> cannot determine whether the vulnerable code can actually be triggered

• Existing method to check whether there is any vulnerability in a software

: fuzzing, AEG techniques

-> “verify” the specific vulnerable code ≠ “discover” possible vulnerability

3

Effective verification of vulnerable clone

4

PoC

?

known
vulnerable sw

code cloning sw

Use the proof of concept to verify whether
the shared vulnerable source code is triggerable in other software!

Structure of the Vulnerability

5

Original software (𝑺)

𝒆𝒑

𝒑𝒐𝒄

ℓ𝒗

Vulnerability

propagation

𝒑
𝒒

𝒑

𝒒

𝒑𝒐𝒄′ 𝒓
𝒒

Target software (𝑻)

𝒆𝒑

ℓ𝒗

𝒒

𝒓
• 𝑣 ⊂ ℓ ⊂ S

• ℓ ⊂ T

• 𝑝𝑜𝑐 = 𝑝⊕ 𝑞

• 𝑝𝑜𝑐′ = 𝑟⊕ 𝑞

• 𝑒𝑝 ∶ entry point of ℓ

0x11 0x22 … * PoC : malformed file type

Process Overview

6

③
①

②

① Extracting crash primitive → q

② Generating guiding input → r

③ Combining q and r → poc`

Extracting Crash Primitive in Input File

• Crash Primitive : the reusable part, a set of bytes used in 𝓵

• Taint Analysis : tracking the flow of untrusted input

- Check controllable memory area and register with input value

→ finding which bytes are used in ℓ

• We should consider the execution context! ex. byte usage timing

→ context-aware taint analysis

7

Extracting Crash Primitive in Input File

1. Monitoring memory area where file data is uploaded – untrusted area

2. Tracking if read operation occurs in untrusted area

3. Marking all memory address and registers affected by untrusted value - with file offset

4. After entering ℓ, if processor access to untrusted area,
marking the accessed data as crash primitive

8…

Input file

affect

memory

bunch1

bunch2

bunch3

untrusted area

Generating Guiding Input

• Guiding Input : bytes that guide the execution flow to 𝓵

- satisfy several conditions for the path to ℓ

• Symbolic Execution : software analysis technique that use symbolic value to execute a
program

→ get constraints of path to ℓ and solve

• To avoid the path explosion problem, take advantage of knowing destination

→ backward path finding, directed symbolic execution

9

Generating Guiding Input

• Backward Path Finding

1. Generate CFG(Control Flow Graph) : to know the path to reach ℓ

2. Find paths from ℓ to entry point to reduce computing resources

• Directed Symbolic execution

3. Make symbolic file and upload to memory

4. Execute with the symbolic file along the path

- active state, loop state, loop-dead state, program-dead state

5. After executing, solve the constraints

10

entry

ep

entry

ep

<BlockID 0x414535 0x414535.child=[0x414548, 0x41455B]>

<BlockID 0x414548 0x414548.child=[0x41467a, 0x4142bd]>

<BlockID 0x41455B 0x41455B.child=[0x414690]>
…

<BlockID 0x414535 0x414535.child=[0x414548, 0x41455B]>

<BlockID 0x414548 0x414548.child=[0x41467a, 0x4142bd]>

<BlockID 0x41455B 0x41455B.child=[0x414690]>
…

Combining

11

Evaluation

12

Evaluation

13

Conclusion

• OCTOPOCS

• verifying whether a vulnerability in propagated vulnerable code can still be
triggered by using the reformed PoC

• context-aware analysis, directed symbolic execution

• effectively reform PoC

• Limitations : loop-dead state, malformed file type

14

Thank you for your attention
Questions?

bible_kwon@korea.ac.kr

15

