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Code Clone and Vulnerability Propagation
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We should determine whether the vulnerable code can be triggered 
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Verify the security of cloned code

• Existing method to solve the security problem of code clone

: vulnerable code clone detection technique

-> cannot determine whether the vulnerable code can actually be triggered

• Existing method to check whether there is any vulnerability in a software

: fuzzing, AEG techniques

-> “verify” the specific vulnerable code ≠ “discover” possible vulnerability
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Effective verification of vulnerable clone
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PoC

?

known
vulnerable sw

code cloning sw

Use the proof of concept to verify whether 
the shared vulnerable source code is triggerable in other software!



Structure of the Vulnerability
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Target software (𝑻)
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𝒒

𝒓
• 𝑣 ⊂ ℓ ⊂ S

• ℓ ⊂ T

• 𝑝𝑜𝑐 = 𝑝⊕ 𝑞

• 𝑝𝑜𝑐′ = 𝑟⊕ 𝑞

• 𝑒𝑝 ∶ entry point of ℓ

0x11 0x22 … * PoC : malformed file type



Process Overview
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③
①

②

① Extracting crash primitive → q

② Generating guiding input → r

③ Combining q and r → poc`



Extracting Crash Primitive in Input File

• Crash Primitive : the reusable part, a set of bytes used in 𝓵

• Taint Analysis : tracking the flow of untrusted input

- Check controllable memory area and register with input value

→ finding which bytes are used in ℓ

• We should consider the execution context! ex. byte usage timing

→ context-aware taint analysis
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Extracting Crash Primitive in Input File

1. Monitoring memory area where file data is uploaded – untrusted area

2. Tracking if read operation occurs in untrusted area

3. Marking all memory address and registers affected by untrusted value - with file offset

4. After entering ℓ, if processor access to untrusted area, 
marking the accessed data as crash primitive
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Generating Guiding Input

• Guiding Input : bytes that guide the execution flow to 𝓵

- satisfy several conditions for the path to  ℓ

• Symbolic Execution : software analysis technique that use symbolic value to execute a 
program

→ get constraints of path to ℓ and solve

• To avoid the path explosion problem, take advantage of knowing destination

→ backward path finding, directed symbolic execution
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Generating Guiding Input

• Backward Path Finding

1. Generate CFG(Control Flow Graph) : to know the path to reach ℓ

2. Find paths from ℓ to entry point to reduce computing resources

• Directed Symbolic execution

3.  Make symbolic file and upload to memory

4.  Execute with the symbolic file along the path

- active state, loop state, loop-dead state, program-dead state

5.  After executing, solve the constraints
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<BlockID 0x414535 0x414535.child=[0x414548, 0x41455B]>

<BlockID 0x414548 0x414548.child=[0x41467a, 0x4142bd]>

<BlockID 0x41455B 0x41455B.child=[0x414690]>
…

<BlockID 0x414535 0x414535.child=[0x414548, 0x41455B]>

<BlockID 0x414548 0x414548.child=[0x41467a, 0x4142bd]>

<BlockID 0x41455B 0x41455B.child=[0x414690]>
…



Combining
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Evaluation
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Evaluation
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Conclusion

• OCTOPOCS

• verifying whether a vulnerability in propagated vulnerable code can still be 
triggered by using the reformed PoC

• context-aware analysis, directed symbolic execution

• effectively reform PoC

• Limitations : loop-dead state, malformed file type
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Thank you for your attention
Questions?

bible_kwon@korea.ac.kr
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