
MOVERY: A Precise Approach for Modified Vulnerable Code Clone Discovery
from Modified Open-Source Software Components

Seunghoon Woo, Hyunji Hong, Eunjin Choi, Heejo Lee∗

Korea University, {seunghoonwoo, hyunji_hong, silver_jin, heejo}@korea.ac.kr

Abstract
Vulnerabilities inherited from third-party open-source soft-
ware (OSS) components can compromise the entire software
security. However, discovering propagated vulnerable code
is challenging as it proliferates with various code syntaxes
owing to the OSS modifications, more specifically, internal
(e.g., OSS updates) and external modifications of OSS (e.g.,
code changes that occur during the OSS reuse).

In this paper, we present MOVERY, a precise approach for
discovering vulnerable code clones (VCCs) from modified
OSS components. By considering the oldest vulnerable func-
tion and extracting only core vulnerable and patch lines from
security patches, MOVERY generates vulnerability and patch
signatures that effectively address OSS modifications. For
scalability, MOVERY reduces the search space of the target
software by focusing only on the codes borrowed from other
OSS projects. Finally, MOVERY determines that the function
is VCC when it matches the vulnerability signature and is
distinctive from the patch signature.

When we applied MOVERY on ten popular software se-
lected from diverse domains, we observed that 91% of the
discovered VCCs had different code syntax from the disclosed
vulnerable function. Nonetheless, MOVERY discovered VCCs
at least 2.5 times more than those discovered in existing tech-
niques, with much higher accuracy: MOVERY discovered 415
VCCs with 96% precision and 96% recall, whereas two recent
VCC discovery techniques, which hardly consider internal
and external OSS modifications, discovered only 163 and 72
VCCs with at most 77% precision and 38% recall.

1 Introduction

The growing number of open-source software (OSS) has made
it possible for developers to reuse neat functionalities from
reliable OSS projects [11, 12, 37]. At the same time, how-
ever, vulnerabilities propagated by the third-party OSS reuse
can threaten the security of the entire system [14, 17, 48, 49].

*Heejo Lee is the corresponding author.

Maintaining OSS components up to date can, in principle, be a
solution to prevent such threats. However, a hasty component
update can adversely affect the entire system (e.g., backward
compatibility problems [40, 44]), especially when developers
reuse OSS projects with code or structural modifications [48].

Therefore, developers often backport upstream security
patches [43] to prevent undesirable threats from vulnerabil-
ities, instead of updating the entire component. To this end,
they first need to identify vulnerable code in the component
to be fixed [13, 43], for example, by leveraging vulnerable
code clone (VCC) discovery techniques (e.g., [17, 49]) and
software composition analysis (SCA) techniques that identify
reused components in a target program (e.g., [9, 48]).

Unfortunately, the precise discovery of vulnerabilities from
modified OSS components is becoming challenging; the main
obstacle is the syntax diversity of vulnerable code, mostly
caused by the following two types of OSS modifications.

• Internal modification of the OSS: The OSS source
code frequently changes during OSS version updates. In
this context, vulnerable codes can exist in various forms
depending on the OSS version, and can be propagated
to other software with various syntaxes.

• External modification of the OSS: Vulnerable code
can be modified during the OSS reuse process, owing to
the nature of the OSS ecosystem where the source code
is often modified in the reuse process [48].

These two types of OSS modifications collectively impair the
accuracy of discovering propagated vulnerable code, as their
syntax can differ from that of the disclosed vulnerable code
(e.g., through public vulnerability databases [31]). To the best
of our knowledge, none of the existing techniques are capable
of precisely discovering vulnerable codes of various syntaxes
present in the modified OSS components.

Limitations of existing techniques. Existing VCC discovery
techniques (e.g., [14, 17, 49]) do not consider internal modifi-
cations of the OSS and examine only external modifications
in a limited fashion, thereby producing many false negatives.
In particular, they can only discover VCCs containing code

lines that were deleted from security patches, which are often
omitted in VCCs within modified OSS components. In con-
trast, existing SCA tools (e.g., [9,48]) determine the existence
of vulnerabilities based only on the reused OSS version, pro-
ducing false positives especially when the vulnerable code is
patched through backporting or not reused. Incidentally, exist-
ing code clone detection techniques (e.g., [35,42]) can be used
to discover VCCs, but they are prone to produce false posi-
tives because they cannot distinguish vulnerable and patched
codes that exhibit high code similarities in general [17, 49].

To overcome such shortcomings, we present MOVERY
(MOdified Vulnerable code clone discovERY), a precise ap-
proach for discovering modified vulnerable code clones from
modified OSS components.

Our approach. The key idea of MOVERY, which is out-
standingly distinguishable from existing VCC discovery tech-
niques, lies in generating an extensible signature that compre-
hends from the oldest to disclosed vulnerable functions.

MOVERY comprises the following two phases: (1) P1 for
generating signatures, and (2) P2 for discovering VCCs.

In P1, MOVERY generates vulnerability and patch signa-
tures using vulnerable and patched functions reconstructed
from security patches. Specifically, MOVERY uses techniques
called function collation and core line extraction. Unlike ex-
isting techniques that focus only on the disclosed vulnerable
function, MOVERY additionally considers the oldest vulnera-
ble function and collates them; this is for addressing internal
OSS modifications, as the delta between the oldest and dis-
closed vulnerable functions summarizes the changes in the
vulnerable code during OSS updates. Thereafter, MOVERY
generates signatures by storing only the core vulnerable and
patch code lines; the generated signatures can be used to dis-
cover VCCs without being affected by code changes other
than core vulnerable and patch code lines (see Section 3.1).

In P2, MOVERY discovers the VCCs in the target software
using the generated signatures. For scalability, MOVERY re-
duces the VCC search space by leveraging the concept of
the existing SCA technique [48], which only inspects code
parts borrowed from other OSS. For accuracy, MOVERY ap-
plies a selective abstraction technique to precisely discover
VCCs with external OSS modifications. Finally, MOVERY
confirms that the function in the target software is a vulnera-
ble code clone when it matches vulnerability signatures and
is distinctive from patch signatures (see Section 3.2).

Evaluation. Experimental results showed that MOVERY sig-
nificantly outperformed existing VCC discovery techniques
such as ReDeBug [14] and VUDDY [17]. For evaluation,
we collected 4,219 Common Vulnerabilities and Exposures
(CVE) patches from the NVD [31], including all the C/C++
CVEs that released their patches via Git [19, 47].

When we applied MOVERY, ReDeBug, and VUDDY on ten
popular software selected from diverse domains, we observed
that 91% of the discovered VCCs had a different syntax from

disclosed vulnerable functions. In the experiments, MOVERY
was able to discover VCCs at least 2.5 times more than ex-
isting techniques with much higher accuracy; this is because
ReDeBug and VUDDY neither consider OSS modifications
nor properly address the syntax diversity of VCCs, resulting
in many false negatives. Specifically, MOVERY discovered
415 VCCs with 96% precision and 96% recall, meanwhile
ReDeBug and VUDDY discovered 163 and 72 VCCs with at
most 77% precision and 38% recall (see Section 5.1).

We further confirmed that MOVERY showed substantially
better accuracy in discovering VCCs from modified compo-
nents than MVP [49] (i.e., a recurring vulnerability detection
technique) and CENTRIS [48] (i.e., an SCA technique): MVP,
which does not consider internal OSS modifications, reported
184 false negatives (54% recall) for ten target software, while
the CENTRIS-based VCC discovery approach yielded 272
false positives (51% precision) as it did not consider back-
ported security patches (see Section 5.2 and Section 5.3).

Moreover, we demonstrated that MOVERY discovered
VCCs from ten target software of various code sizes (i.e.,
ranging from 212,672 to 14,489,534 C/C++ lines of code)
within 200 s on average (for each software). This measured
elapsed time is shorter than that of ReDeBug (298 s) and
VUDDY (798 s), suggesting that MOVERY is sufficiently fast
and scalable for practical usage (see Section 5.4).

Contributions. We summarize our contributions below.

• We present MOVERY, the first approach for precisely
discovering VCCs in modified OSS components. The
key technique is generating signatures that are capable of
addressing the internal and external OSS modifications.

• We demonstrated that internal modifications of the OSS,
which were hardly considered in existing techniques, can
play a leading role in the syntax diversity of VCCs.

• Although most (91%) of the syntax of VCCs in modi-
fied components differed from the disclosed vulnerable
functions, MOVERY was able to discover 415 VCCs in
ten target software selected from diverse domains, with
96% precision and 96% recall.

2 Motivation

In this section, we clarify the target problem of MOVERY, and
discuss the motivation for MOVERY with examples.

2.1 Problem statement
We focused on discovering propagated vulnerabilities in the
modified OSS components. Suppose that a vulnerability is
introduced in an OSS and is then patched. Let fd be the dis-
closed vulnerable function (e.g., through public vulnerability
databases), fp be the patched function, and fo be the vulnera-
ble function contained in an older version of the OSS, which
has a different code syntax from fd (see Figure 1).

…

Patched
function

Disclosed
vulnerable function

Initial
function

Vulnerability
patchfd fp

Vulnerability
introduction update

Oldest
vulnerable function

fo
update

Figure 1: Depiction of the vulnerability fix flow from the vulner-
ability introduction to the vulnerability patch.

Using these terms, we can classify the propagation of vul-
nerability caused by vulnerable OSS reuse into the following
four categories (C1 to C4, see Table 1):

Table 1: Classification of vulnerable function propagation.

Category Description
C1 fd is reused without code modification.
C2 fd is reused with code modification.
C3 fo is reused without code modification.
C4 fo is reused with code modification.

Regardless of the category, all propagated vulnerable func-
tions should be discovered and patched.

Technical challenges. The main technical challenge is ad-
dressing the syntax diversity of vulnerable code, mostly arises
for the following two reasons: internal and external modifi-
cation of the OSS. As the source code of an OSS frequently
changes during OSS version updates (i.e., internal modifica-
tions of OSS), the syntax of a vulnerable function can also
be changed (i.e., C3 and C4). Moreover, developers often
apply their own code patches to OSS components (i.e., exter-
nal modifications of OSS), and thus, a propagated vulnerable
function can exist with various syntaxes (i.e., C2 and C4).

Such syntax diversity significantly impairs the accuracy
of VCC discovery. Existing VCC discovery techniques (e.g.,
[14, 17, 49]) can cover only C1 and limited C2, thereby pro-
ducing many false negatives. Typically, they define code lines
deleted from the security patch as vulnerable lines, and deter-
mine a function as VCC only if the function contains all the
vulnerable lines. However, the vulnerable lines in fd they de-
fined may not exist in fo due to the OSS modifications; in this
case, they fail to discover VCCs, producing false negatives.

2.2 Motivating examples
We introduce two VCC examples with different syntaxes from
disclosed vulnerable codes; all are now fixed (i.e., patched)
by the development teams. What we want to emphasize here
is that syntactically different VCCs can appear in practice
owing to internal and external OSS modifications, and that
these are difficult to discover precisely.

Example 1) We first introduce a memory allocation failure
vulnerability that existed in LibZip before v1.3.0 (i.e., CVE-
2017-14107). Listing 1 shows the patch snippet for fixing the
vulnerability. We confirmed that PHP1, which was reusing
vulnerable LibZip, backported the security patch in 2017; the
patched function snippet in PHP is shown in Listing 2.

1https://github.com/php/php-src

Listing 1: A patch snippet for CVE-2017-14107 in LibZip.
1 index 3bd593b1..9d3a4cbb 100644
2 ––– a/lib/zip_open.c
3 +++ b/lib/zip_open.c
4 @@ ... @@ _zip_read_eocd64 (...) {
5 zip_cdir_t *cd;
6 zip_uint64_t offset;
7 zip_uint8_t eocd[EOCD64LEN];
8 ...
9 zip_error_set(error, ZIP_ER_SEEK, EFBIG);

10 return NULL;
11 }
12 - if ((flags & ZIP_CHECKCONS)

&& offset+size != eocd_offset) {
13 + if (offset+size > buf_offset + eocd_offset) {
14 + /* cdir spans past EOCD record */
15 + zip_error_set(error, ZIP_ER_INCONS, 0);
16 + return NULL;
17 + }
18 + if ((flags & ZIP_CHECKCONS)

&& offset+size != buf_offset + eocd_offset) {
19 zip_error_set(error, ZIP_ER_INCONS, 0);

Listing 2: The patched _zip_read_eocd64 function in PHP. High-
lighted areas indicate the code parts that differ from the dis-
closed patched function. The vulnerable _zip_read_eocd64 func-
tion in PHP exhibited only 13% syntax similarity to the disclosed
vulnerable function of LibZip.
1 static struct zip_cdir * _zip_read_eocd64 (...) {
2 struct zip_cdir_t *cd;
3 zip_uint64_t offset;
4 const zip_uint8_t *cdp;
5 ...
6 _zip_error_set(error, ZIP_ER_SEEK, EFBIG);
7 return NULL;
8 }
9 if (offset+size > buf_offset + eocd_offset) {

10 /* cdir spans past EOCD record */
11 _zip_error_set(error, ZIP_ER_INCONS, 0);
12 return NULL;
13 }
14 if ((flags & ZIP_CHECKCONS)

&& offset+size != buf_offset + eocd_offset) {
15 _zip_error_set(error, ZIP_ER_INCONS, 0);

Because PHP reused an older version of LibZip (released
in 2013) with code modifications, the syntax of the vulnerable
function in PHP was different from that specified in the dis-
closed patch for CVE-2017-14107. Considering the function
as a set of code lines, when measuring Jaccard similarity [46]
between the vulnerable function in PHP and the vulnerable
function disclosed in LibZip, the measured similarity was
13%. Moreover, the PHP team could not directly apply the se-
curity patch owing to the syntax diversity. For these reasons,
the PHP team modified and applied the disclosed security
patch to their codebase, rather than updating the entire LibZip
to a safe version (i.e., v1.3.0 or later).

This suggests the need to discover VCCs with large code
differences (in this case, 87%) from the disclosed vulnerable
function. MOVERY, which considers the syntax of the oldest
vulnerable function and uses only the core lines in signature
generation, can discover even a VCC with such large code
differences (details are explained in Section 3).

https://github.com/php/php-src

Listing 3: A patch snippet for CVE-2014-5461 in Lua 5.2.3.
1 index aafa3dca2..d02e11328 100644
2 ––– a/ldo.c
3 +++ b/ldo.c
4 @@ -326,7 +327,13 @@ int luaD_precall (...) {
5 Proto *p = clLvalue(func)->p;
6 - luaD_checkstack(L, p->maxstacksize);
7 - func = restorestack(L, funcr);
8 n = cast_int(L->top - func) - 1;
9 + luaD_checkstack(L, p->maxstacksize);

10 for (; n < p->numparams; n++)
11 setnilvalue(L->top++);
12 - base = (!p->is_vararg)? func + 1:

adjust_varargs(L, p, n);
13 + if (!p->is_vararg) {
14 + func = restorestack(L, funcr);
15 + base = func + 1;
16 + }

Listing 4: A backporting patch for CVE-2014-5461 in Redis.
1 ––– a/deps/lua/src/ldo.c
2 +++ b/deps/lua/src/ldo.c
3 @@ -276,3 +276,3 @@ int luaD_precall (...) {
4 Proto *p = cl->p;
5 - luaD_checkstack(L, p->maxstacksize);
6 + luaD_checkstack(L, p->maxstacksize + p->numparams);
7 func = restorestack(L, funcr);
8 // No "base = (!p->is_vararg)? func + 1:..." code line

However, VUDDY [17], a scalable VCC discovery tech-
nique that only considers limited changes in the vulnerable
function, cannot discover such VCCs. ReDeBug [14], a VCC
discovery technique that considers nearby three (by default)
lines of deleted and added code lines from the patch, also fails
to discover such a VCC because the three lines immediately
above the lines deleted from the patch (i.e., lines #9, #10, and
#11 in Listing 1) differ from those of the function in PHP (i.e.,
lines #6, #7, and #8 in Listing 2).

Example 2) As an example of a VCC that does not in-
clude the code lines deleted from the patch, we introduce a
buffer overflow vulnerability that existed in Lua2 v5.1 through
v5.2.2, which allows context-dependent attackers to cause
a denial of service attack (i.e., CVE-2014-5461). Listing 3
shows the patch snippet applied in Lua v5.2.3. We confirmed
that Redis3, which reused vulnerable Lua with code modifica-
tions, backported the security patch for CVE-2014-5461 in
September 2020 (see Listing 4).

Specifically, we noted that the patch applied in Redis was
different from that applied in the Lua repository. This is be-
cause Redis reused an old version of Lua (v5.1.5) where the
syntax of the vulnerable function is different from what is
disclosed, it was infeasible for the Redis team to apply the
patch for CVE-2014-5461 as it was (e.g., line #12 of Listing 3
did not exist in the reused code parts of Lua within Redis),
and thus they followed the patch suggested on the official bug
tracker of Lua4.

2https://github.com/lua/lua
3https://github.com/redis/redis
4http://www.lua.org/bugs.html#5.2.2-1

fo fd fp

INPUT

OUTPUT

INPUT

OUTPUT

Figure 2: High-level overview of the workflow of MOVERY.

This case highlights the need to discover VCCs that were
propagated with the syntax of older versions, which may
not contain the code lines deleted from security patches.
MOVERY makes this possible by collating vulnerable func-
tions between the oldest and the disclosed vulnerable ver-
sions (see Section 3). However, existing VCC discovery tech-
niques [14, 17, 49] fail to discover such a VCC when vul-
nerable lines they defined (e.g., in this case, line #12 in List-
ing 3) are not contained in the VCC. In contrast, existing SCA
techniques [9, 48] misinterpret that Redis still contains the
vulnerability because a vulnerable version of Lua (i.e., v5.1.5)
is reused in Redis, despite the Redis team has backported the
security patch.

3 Methodology of MOVERY

In this section, we describe the methodology of MOVERY.
MOVERY comprises the following two phases: signature gen-
eration phase (P1) and VCC discovery phase (P2). In P1,
MOVERY uses techniques called function collation and core
line extraction to generate extensible signatures for addressing
the syntax diversity of vulnerable codes. In P2, for scalability,
MOVERY reduces the search space of the target software by
focusing only on the code parts borrowed from other OSS. On
top of that, MOVERY discovers a VCC in the target software:
a function that is distinct from patch signatures and simulta-
neously matches the vulnerability signatures. The high-level
workflow of MOVERY is shown in Figure 2.

3.1 Signature generation (P1)
Given a 3-tuple of functions, the oldest vulnerable function
(fo), the disclosed vulnerable function (fd), and the patched
function (fp), MOVERY generates vulnerability and patch
signatures (the method for collecting vulnerable and patched
functions is introduced in Section 4.1).

https://github.com/lua/lua
https://github.com/redis/redis
http://www.lua.org/bugs.html#5.2.2-1

Principles of signature generation. First, we decided that
signatures should satisfy the following three principles to
address the syntax diversity of vulnerable code clones.

(1) Minimization. The ability to address syntax diversity
decreases as more code lines are included in the signa-
ture [49]. Hence, we need to generate a signature by
collecting a minimal number of core code lines that are
capable of discovering vulnerable code clones.

(2) Extensibility. Vulnerability signatures should be exten-
sible (i.e., from the oldest to the disclosed vulnerable
functions) to address internal OSS modifications.

(3) Perceptibility. Signatures should be available to deter-
mine whether the environment in which the vulnerable
code manifests (e.g., control dependencies), is still pre-
served in the propagated vulnerable code.

Phase overview. For each vulnerability, MOVERY first exam-
ines the common code lines between fo and fd by collating
them (i.e., for extensibility). MOVERY then extracts only the
following core code lines from fo and fd : essential and de-
pendent vulnerable code lines (i.e., for perceptibility). By
gathering only the extracted essential and dependent vulnera-
ble code lines (i.e., for minimization), MOVERY generates a
vulnerability signature. A similar process is applied to generat-
ing patch signatures; MOVERY analyzes fp, extracts essential
and dependent patch code lines, and then generates a patch
signature by gathering them.

Function collation. Unlike existing VCC discovery tech-
niques (e.g., [14, 17, 49]) that focus only on code lines in fd ,
MOVERY examines (fo, fd) pairs to generate extensible vul-
nerability signatures for addressing syntax diversity caused
by internal OSS modifications. Because fo and fd contain the
same vulnerability, we can infer that code lines (1) present in
both fo and fd and (2) deleted from security patches would
play an important role in manifesting the vulnerability (we
further discuss this in Section 6).

Essential vulnerable and patch line extraction. To address
syntax diversity caused by external OSS modifications, we
only consider core lines in signature generation. To this end,
we first define essential vulnerable and patch lines as follows.

⋄ Definition I. Essential vulnerable and patch lines.

We define essential vulnerable lines (EV) as the code
lines that are deleted in the security patch and included in
both fo and fd . We then define essential patch lines (EP),
the code lines that are added in the security patch, but do
not exist in both fo and fd .

The essential vulnerable (Ev) and patch lines (Ep) can be
formally expressed as follows (let l be a source code line):

EV =
{

l |
(
l ∈ (fd \ fp)

)
∧
(
l ∈ (fo ∩ fd)

)
∧
(

l /∈ fp
)}

EP =
{

l |
(
l ∈ (fp \ fd)

)
∧
(
l /∈ (fo ∪ fd)

)
∧
(

l ∈ fp
)}

Listing 5: A patch snippet for CVE-2016-8654.
1 // Jasper_1.900.31/src/libjasper/jpc/jpc_qmfb.c
2 void jpc_qmfb_split_col (...) {
3 ...
4 if (bufsize > QMFB_SPLITBUFSIZE) {
5 if (!(buf = jas_alloc2(bufsize, sizeof(jpc_fix_t)))) {
6 abort();
7 }
8 }
9 if (numrows >= 2) {

10 - hstartcol = (numrows + 1 - parity) » 1;
11 - // ORIGINAL (WRONG): m = (parity) ?

hstartcol : (numrows - hstartcol);
12 - m = numrows - hstartcol;
13 + hstartrow = (numrows + 1 - parity) » 1;
14 + // ORIGINAL (WRONG): m = (parity) ?

hstartrow : (numrows - hstartrow);
15 + m = numrows - hstartrow;
16 n = m;
17 dstptr = buf;
18 srcptr = &a[(1 - parity) * stride];

Listing 6: The oldest vulnerable function snippet for CVE-2016-
8654. Highlighted areas indicate the code parts that differ from
the disclosed vulnerable function.
1 // Jasper_1.900.1/src/libjasper/jpc/jpc_qmfb.c
2 void jpc_qmfb_split_col (...) {
3 ...
4 if (bufsize > QMFB_SPLITBUFSIZE) {
5 if (!(buf = jas_alloc(bufsize * sizeof(jpc_fix_t)))) {
6 abort();
7 }
8 }
9 if (numrows >= 2) {

10 hstartcol = (numrows + 1 - parity) » 1;
11 m = (parity) ? hstartcol : (numrows - hstartcol);
12 n = m;
13 dstptr = buf;
14 srcptr = &a[(1 - parity) * stride];

As a working example, we introduce the CVE-2016-8654
case, a heap-buffer overflow vulnerability discovered in Jasper.
Listing 5 shows the patch snippet based on Jasper v1.900.31,
and Listing 6 shows the oldest vulnerable function snippet
from Jasper v1.900.1. Among the code lines deleted from the
patch (i.e., lines #10 to #12 in Listing 5), only line #10 in
Listing 5 exists in the oldest vulnerable function; therefore,
this line belongs to Ev. Subsequently, the code lines added
from the patch (i.e., lines #13 to #15 in Listing 5) are included
in Ep (i.e., these lines belong to neither fo nor fd).

Dependent vulnerable and patch line extraction. Propa-
gated essential vulnerable lines do not always guarantee that
the vulnerable behavior is still maintained. To consider the
environment where the vulnerability manifested, MOVERY
examines dependent code lines. In particular, MOVERY pays
attention to the code lines that have control or data dependen-
cies with the essential vulnerable and patch lines, which have
a major impact on vulnerability manifestation [3, 49].

⋄Definition II. Dependent vulnerable and patch lines.

We define dependent vulnerable lines (Dv) as the code
lines that have control or data dependencies with the es-
sential vulnerable lines and are included in both fo and fd .
We then define dependent patch lines (Dp), the code lines
in fp that are dependent on the essential patch lines.

Let x 7→c y and x 7→d y indicate the control and data de-
pendency of a code line x with y, respectively. Then, the de-
pendent vulnerable code lines (Dv) and dependent patch code
lines (Dp) can be formally expressed as follows:

Dv =
{

l |
(

l ∈ (fo ∩ fd)
)
∧
((

l 7→c lv
)
∨
(
l 7→d lv

))}
Dp =

{
l |
(

l ∈ fp

)
∧
((

l 7→c lp
)
∨
(
l 7→d lp

))}
where lv ∈ Ev and lp ∈ Ep. For example, in the case of CVE-
2016-8654, code lines that have control dependencies (e.g.,
line #9 in Listing 5 and Listing 6) or data dependencies (e.g.,
line #18 (#14) in Listing 5 (Listing 6)) with the essential
vulnerable line are included in Dv.

Control flow code line extraction. Owing to the changes
in control flows of the vulnerable function, the environment
where the vulnerability executed may not be persisted in the
cloned function; such differences in control flows can yield
false positives in VCC discovery. Therefore, we decided to
include vulnerable control flow code lines (Fv) into signatures.

⋄Definition III. Vulnerable control flow code lines.

We define vulnerable control flow code lines (Fv) as the
conditional statements that directly related to the control
flow from the entrance of the vulnerable function to the
essential vulnerable code lines.

For example, in Listing 5 and Listing 6, three conditional
statements (i.e., lines #4, #5, and #9 in both listings) are passed
before reaching the essential vulnerable lines (i.e., line #10
in both listings). Similarly, for extensibility, only code lines
common to fo and fd are considered when examining the
control flow reaching the essential vulnerable lines. Conse-
quently, lines #4 and #9 in Listing 5 and Listing 6 are defined
as vulnerable control flow code lines.

Here, we consider the control flow only in vulnerable func-
tions. If a new control flow is added through the security patch,
the added lines (e.g., conditional statements) are included in
the essential patch lines; we decided that there was no need
to include duplicate code lines in the patch signature.

Signature generation. Finally, MOVERY generates a vulner-
ability signature (Sv) and a patch signature (Sp) by gathering
the previously extracted information.

Sv = (Ev, Dv, Fv)

Sp = (Ep, Dp)

One important thing is that MOVERY does not simply store
code lines belonging to each element with their original syn-
tax. Instead, MOVERY applies text-preprocessing to code
lines, which can prevent false negatives caused by changes
that do not affect the meaning of the vulnerable and patched
code [17, 49]. Specifically, MOVERY utilizes the following
two techniques: normalization and abstraction.

Listing 7: Example vulnerability signature for CVE-2016-8654.
Sv = (

Ev = [{ "norm": "hstartcol=(numrows+1-parity)>1;",
"abst": "DVAL=(PARAM+1-PARAM)>1;" }

],
Dv = [{ "norm": "if(numrows>=2){",

"abst": "if(PARAM>=2){" },
"norm": "srcptr=&a[(1-parity)*stride];",
"abst": "DVAL=&PARAM[(1-PARAM)*PARAM];" },

...],
Fv = [{ "norm": "if(bufsize>QMFB_SPLITBUFSIZE){",

"abst": "if(DVAL>QMFB_SPLITBUFSIZE){" },
...]

)

• Normalization. Removing whitespaces and comments
from each function and converting all the characters in
the function to lower cases.

• Abstraction. Replacing every occurrence of parameters,
variable names, variable types, and callee function names
in each function with symbols PARAM, DNAME, DTYPE,
and FCALL, respectively.

MOVERY first identifies all the code lines to be stored in
the signatures. MOVERY then applies normalization to the
given three functions (i.e., fo, fd , and fp), and stores the nor-
malized form of the identified code lines into the signatures
(i.e., labeled as “norm”). Next, MOVERY applies both abstrac-
tion and normalization to the given three functions and then
stores the output to the signatures (i.e., labeled as “abst”).
The reason for storing both normalized code lines in the form
of abstraction applied/non-applied is to minimize false alarms
that can occur because of the naive abstraction method (de-
tails are introduced in Section 3.2). Incidentally, MOVERY
skips the normalized code line if the number of characters is
less than 15, to prevent false alarm caused by general short
code; we discuss this decision in Section 6. Listing 7 shows
an example vulnerability signature for the working example.

3.2 Vulnerable code clone discovery (P2)
Given the target software (T), vulnerability signature (Sv),
patch signature (Sp), and vulnerable functions (fo and fd),
MOVERY discovers vulnerable code clones in T .

Phase overview. For scalable and precise VCC discovery,
MOVERY utilizes two techniques: (1) search space reduc-
tion and (2) selective abstraction matching. First, MOVERY
reduces the search space of T by focusing only on the code-
bases of reused OSS components, i.e., MOVERY searches for
VCCs only in “reuse” code regions. In addition, MOVERY
uses selective abstraction matching between signatures and T
to improve the discovery accuracy. Finally, MOVERY deter-
mines that a function in T is a vulnerable code clone when it
(1) contains Sv, (2) does not contain Sp, and (3) has a syntax
similar to the vulnerable functions (i.e., fo and fd).

Reducing search space. When discovering VCCs in the
target software T , searching the entire codebase of T is a
burdensome task. Therefore, we decided to reduce the search

space by leveraging the concept of a state-of-the-art software
composition analysis technique [48]. In particular, they seg-
mented the codebase of software into the borrowed code part
(i.e., a part of the reusing third-party OSS) and the application
code part (i.e., the unique part of the software). Inspired by
this approach, we focused only on the borrowed code part of
T , which conceptually includes every OSS component.

Suppose MOVERY discovers a vulnerable code clone of
the vulnerability V in T . To identify the borrowed code part
of T , MOVERY first needs to collect the codebase of software
C from which V originated. MOVERY focuses on the fact that
there is at least one common function between T and C when
C is reused in T [48]. The detailed process is as follows.

(1) First, MOVERY extracts all functions from T and C with
their path information (e.g., “./src/file.c”).

(2) Next, MOVERY checks whether there is a common func-
tion (i.e., a function that exists in common for both T
and C, with exactly the same syntax) between C and T .

(2-1) If there are common functions, MOVERY gathers
the directory paths for every common function
within T . The collected directory paths are con-
sidered as the borrowed code part of T .

(2-2) If there is no common function, MOVERY deter-
mines that T does not reuse C, and subsequently,
VCCs of V are not contained in T .

Using this method, MOVERY can only focus on the code
where VCCs could exist. Moreover, MOVERY can skip the
vulnerabilities originating in the OSS that are not reused in
T ; consequently, this method increases the VCC discovery
scalability and performance (see Section 5.5).
Selective abstraction. MOVERY applied normalization and
abstraction to all code lines in the signatures in P1 to address
code changes that preserve the semantics of functions. How-
ever, we noted that simple abstraction matching, as used in
existing techniques, may impair the VCC discovery accuracy.
For example, VUDDY [17] changes all variable names to the
symbol DVAL at the time of abstraction, and then uses them
for matching; if a security patch only changes variable names
for fixing vulnerability (e.g., Listing 5), VUDDY cannot dis-
tinguish vulnerable and patched functions.

Thus, we devised the selective abstraction matching. The
main idea is as follows: if the abstracted syntaxes of the
vulnerable and patched functions are the same, MOVERY con-
siders only the normalized code lines in the signatures. To this
end, MOVERY first applies normalization and abstraction to
the entire code lines of fd and fp, respectively. If the syntaxes
of fd and fp with abstraction are different, the abstracted code
lines in the signatures are used for matching (e.g., “abst” in
Listing 7). However, if they are the same, this suggests that
the security patch changes the part where the abstraction is
applied; thus, MOVERY uses only the normalized code of the
signatures in matching (e.g., “norm” in Listing 7).

Discovering vulnerable code clones. Finally, MOVERY com-
pares the vulnerability (Sv) and patch signatures (Sp) with
the identified borrowed code part of the target software, to
discover vulnerable code clones.

⋄Definition IV. Vulnerable code clone.

We define a function f in T is a vulnerable code clone
if it satisfies the following conditions.

• Cond 1) f should contain all code lines in Sv.
∀l∈Sv .(l ∈ f)

• Cond 2) f should not contain any code lines in Sp.
∀l∈Sp .(l /∈ f)

• Cond 3) The syntax of f should be similar to fo or fd .
(Sim(f , fo)≥ θ)∨ (Sim(f , fd)≥ θ)

MOVERY considers a function f as a VCC candidate if
it contains every code line in Sv and does not include all
code lines in Sp. To avoid false positives that occur when the
code lines contained in signatures are very few and general,
MOVERY considers the syntax similarity between f and vul-
nerable functions (i.e., Cond 3): MOVERY splits f and the
vulnerable functions into sets of code lines, and then mea-
sures the Jaccard similarity [46] between them

(
i.e., (| f ∩ fd |

/ | f ∪ fd |) and (| f ∩ fo| / | f ∪ fo|)
)
. Considering external OSS

modifications, we set the threshold (θ) used for Cond 3 to a
small value (e.g., 0.5). As a result, if a function satisfying the
three conditions is discovered in the target software, MOVERY
determines that the function is a vulnerable code clone.

In a general situation, all three conditions are considered.
To cover more various types of vulnerabilities, MOVERY con-
siders combinations of the conditions as follows:

(1) If no code line is added to the security patch, MOVERY
uses only vulnerability signatures in VCC discovery (i.e.,
considering Conds 1 and 3).

(2) If the security patch does not contain deleted code lines,
MOVERY uses only patch signatures in VCC discovery
(i.e., considering Conds 2 and 3).

(3) If fo does not exist (e.g., the vulnerability only exists
in a single OSS version), we determine that internal
modification cannot occur, and MOVERY uses only fd
in the signature generation and in Cond 3.

(4) If the code line sets of vulnerable and patched functions
are the same (e.g., when a security patch only changes
the order of code lines), MOVERY records the order of
the code lines of the vulnerable function. When a func-
tion f satisfying Conds 1 and 3 appears, MOVERY deter-
mines that f is vulnerable only when the code line order
of the vulnerable function is maintained in f .

Our experimental results demonstrate that MOVERY can
also discover such VCCs with high accuracy; note that these
four cases are not dominant (i.e., less than 30%).

Table 2: Vulnerability dataset overview.
Category Count (#)

Security patches 4,219
Disclosed vulnerable and patched function pairs 7,762
Oldest vulnerable functions 5,936

4 Implementation of MOVERY

In this section, we introduce the implementation of MOVERY,
including the vulnerability dataset and the architecture.

4.1 Vulnerability dataset

Collecting security patches. We collected security patches
by leveraging the method used in the previous approaches [19,
32]; we examined CVEs in the National Vulnerability
Database (NVD) and checked if git commit URLs (i.e., secu-
rity patch commits) were included in the references. We then
gathered security patches by crawling such patch commits
from the corresponding Git repositories. We chose the C/C++
vulnerabilities as our initial targets, because code fragments
reuse and modified OSS reuse are prominent in C/C++ soft-
ware [17, 47–49]. Consequently, we collected 4,219 C/C++
security patches from the NVD (as of March 2021).

Reconstructing functions. We then reconstructed vulnerable
and patched functions from the collected security patches. We
focused on the header of a security patch, which provides file
commits before and after applying the patch [17, 49]. For ex-
ample, in Listing 3, “aafa3dca2” and “d02e11328” indicate
the commit of the vulnerable and patched file, respectively.
After accessing the vulnerable (resp. patched) file, we ex-
tracted every function containing code lines deleted (resp.
added) from the patch as the disclosed vulnerable function fd
(resp. patched function fp). Here we excluded (fd , fp) pairs
that the code changes were not intended to fix vulnerabilities,
such as comment or whitespace changes.

To reconstruct the oldest vulnerable function (fo), we identi-
fied the oldest vulnerable version of the software from which
the vulnerability originated, by referring to Common Plat-
form Enumeration (CPE) [30] of the NVD. Since NVD may
provide incorrect CPEs for some CVEs [47], we manually
examined versions sequentially starting from the oldest ver-
sion specified in the CPE: if a version containing a function
with the same name as fd is first detected, we determined that
the version is the oldest vulnerable version. When software
is maintained with parallel versioning (e.g., OpenSSL 1.0.0*
and 1.0.1*), we infer the version order based on the version
release date. We then accessed the oldest vulnerable version
and extracted fo that: (1) had the same name as fd , and (2) ex-
isted in the path of the vulnerable file; we did not reconstruct
fo where the syntax of fo was the same as that of fd .

Consequently, we reconstructed 7,762 (fd , fp) pairs and
5,936 oldest vulnerable functions (see Table 2).

Dataset observations. We noted that internal modifications
of OSS can play a leading role in the syntax diversity of
vulnerable codes. To be specific, among the 5,936 vulnerable
functions that exist in multiple OSS versions, we found the
4,623 cases (78%) where fd and fo had different syntaxes.
When we measured the Jaccard similarity between every fd
and fo pair, the average similarity score was 56%. The facts
that fo and fd are different in many cases (i.e., 78%) and
that OSS internal updates change the vulnerable code syntax
on average by 44%, suggest that internal OSS modifications
should be considered in VCC discovery.

4.2 Architecture
MOVERY comprises the following three modules: (1) a
dataset collector, (2) a signature generator, and (3) a VCC
discoverer. The dataset collector gathers security patches and
reconstructs vulnerable and patched functions. The signa-
ture generator, literally, generates vulnerability and patch sig-
natures for every collected vulnerability. Finally, the VCC
discoverer performs the actual vulnerable code clone discov-
ery on the target software. Each module consists of 800 to
1,000 lines of Python code, excluding external libraries such
as function parsers. The source code of MOVERY is pub-
licly available at https://github.com/wooseunghoon/
MOVERY-public.

Function parser and analyzer. To extract functions from vul-
nerable files, patched files, and the target software, we utilized
universal Ctags [6], a precise and fast open-source function
parser. In addition, we used the Joern parser [50] to examine
control and data dependencies of functions for generating
signatures. In particular, MOVERY generates a code property
graph (i.e., a graph that incorporates an abstract syntax tree,
a control flow graph, and a program dependency graph) of
the extracted vulnerable and patched functions using Joern
parser; from the graph, MOVERY can obtain (1) the entire
control flow of the function, and (2) dependencies between
each code line, which are used to generate signatures.

5 Evaluation
In this section, we evaluate MOVERY. Section 5.1 investigates
how accurately MOVERY discovers VCCs in modified com-
ponents, compared to existing VCC discovery techniques (i.e.,
VUDDY [17] and ReDeBug [14]). Section 5.2 and Section
5.3 compare MOVERY to the recurring vulnerability detection
technique (i.e., MVP [49]) and the SCA-based technique (i.e.,
CENTRIS [48]), respectively, We evaluate the speed and scal-
ability of MOVERY in Section 5.4, and introduce the efficacy
of the search space reduction in Section 5.5. Finally, Section
5.6 presents a case study observed in our experiments. We
ran MOVERY on a machine with Ubuntu 16.04, Intel Xeon
Processor @ 2.40 GHz, 32GB RAM, and 6TB HDD.

https://github.com/wooseunghoon/MOVERY-public
https://github.com/wooseunghoon/MOVERY-public

Table 3: Target software overview.
IDX Name Version #Line∗ #Comp† Domain
T1 FreeBSD v12.2.0 14,489,534 47 Operating system
T2 ReactOS v0.4.13 6,419,855 23 Operating system
T3 ArangoDB v3.7.9 3,064,973 22 Database
T4 FFmpeg n4.3.2 1,230,520 4 Multimedia processing
T5 OpenCV v4.5.1 1,092,317 15 Computer vision
T6 Emscripten v2.0.15 759,020 11 Compiler
T7 Crown v0.42.0 723,372 20 Game engine
T8 Git v2.31.0 293,467 5 Version control system
T9 OpenMVG v1.6 262,610 8 Image processing
T10 Redis v5.0.12 212,672 8 Database

Total - - 28,548,340 190 -
*: Counting only C/C++ code lines, †: The number of modified OSS components.

5.1 Accuracy of MOVERY

Target software selection. We selected target software based
on the following three criteria to claim the generality of
MOVERY: they (1) should be popular C/C++ OSS, (2) should
contain a sufficient number of modified components, and (3)
should not be biased toward any particular domain.

We first collected C/C++ repositories from GitHub that
exhibit more than 1,000 stargazer counts, i.e., a popularity
indicator on GitHub. We then leveraged CENTRIS [48] to
rank the collected software based on the number of modified
OSS components. While examining the ranked software in
descending order, we selected target software for which one
or more VCCs were discovered by MOVERY.

Table 3 summarizes the selected ten target software pro-
grams. They were selected based on clear criteria, were ob-
tained from diverse domains and had various code sizes (i.e.,
ranging from 212,672 to 14,489,534 C/C++ lines of code),
thus we decided that the selected target software can add gen-
erality to the experiments. Note that the cumulative code size
of our dataset is 80 times larger than that used in VUDDY [17],
and almost the same as the dataset used in MVP [49].

Methodology. We selected two VCC discovery techniques
for accuracy comparison: ReDeBug [14] and VUDDY [17].
We applied MOVERY, ReDeBug, and VUDDY to ten target
software and evaluated the VCC discovery results. We used
ReDeBug and VUDDY with their default options by referring
to their papers [14, 17]. We selected θ as 0.5 in MOVERY
(related experiments are introduced at the end of this section).

To evaluate the accuracy, we used the following five met-
rics: true positives (TP), false positives (FP), false negatives
(FN), precision (#TP

#TP+#FP), and recall (#TP
#TP+#FN). Because it

is infeasible to find every vulnerable code in the target soft-
ware, we cannot easily determine FNs. Therefore, we only
measure indisputable FNs; for example, FNs of MOVERY are
the VCCs (i.e., not FPs) detected by VUDDY and ReDeBug
but not discovered in MOVERY [17, 49]. TPs and FPs are de-
termined by manual verification performed by two security
analysts. We manually viewed the discovered VCCs and the
environment where the vulnerability manifested to determine
whether the discovered VCC is correct.

Listing 8: A patch snippet for CVE-2014-9669 in FreeType2.
1 tt_cmap12_validate (...) {
2 num_groups = TT_NEXT_ULONG(p);
3 if (length > (FT_ULong)(valid->limit - table) ||
4 - length < 16 + 12 * num_groups)
5 + /* length < 16 + 12 * num_groups ? */
6 + length < 16 ||
7 + (length - 16) / 12 < num_groups)

Listing 9: The oldest vulnerable function snippet for CVE-2014-
9669. Highlighted areas indicate the code parts that differ from
the disclosed vulnerable function.
1 // Extracted from FreeType2 v2.1.10 ("./src/sfnt/ttcmap.c").
2 tt_cmap12_validate (...) {...
3 num_groups = TT_NEXT_ULONG(p);
4 if (table + length > valid->limit || length < 16 + 12 *

num_groups)

Overview of accuracy measurement. Table 4 summarizes
the VCC discovery results of MOVERY, VUDDY, and ReDe-
Bug. The discovered 434 VCCs were found from 121 CVEs.
Specifically, CVE vulnerabilities that were discovered in Re-
actOS contained many vulnerable functions, thus the number
of discovered VCCs was considerable.

Owing to the OSS modifications, 396 VCCs (91%) existed
in a different syntax to the disclosed vulnerable function. Nev-
ertheless, MOVERY discovered 415 VCCs with 96% preci-
sion and 96% recall, whereas ReDeBug discovered 163 VCCs
with 65% precision and 38% recall and VUDDY discovered
72 VCCs with 77% precision and 17% recall (Appendix A
presents the modification types and Appendix B provides the
severity and vulnerability types of the discovered VCCs).

Notably, the VCC discovery results of MOVERY included
all VCCs discovered by VUDDY, and covered 144 (88%)
VCCs discovered by ReDeBug, whereas VUDDY and ReDe-
Bug were only able to cover 72 (17%) and 144 (35%) VCCs
discovered by MOVERY, respectively.

FNs of ReDeBug and VUDDY. Existing techniques failed
to discover many VCCs owing to the OSS modifications. Re-
DeBug did not discover 271 VCCs (62.4%) where the code
lines deleted in the security patch did not exist, or the code
syntax was modified beyond what ReDeBug could handle.
VUDDY failed to discover 362 VCCs (83.4%), in which modi-
fications occurred in code parts other than that VUDDY could
address (e.g., Type-3 clones). An example is CVE-2014-9669,
an integer overflow vulnerability that exists in FreeType2 (see
Listing 8). We confirmed that line #4 in Listing 8 (i.e., defined
as the vulnerable line by ReDeBug and VUDDY) existed in
the oldest vulnerable function as a different syntax (i.e., line
#4 in Listing 9) because of the internal OSS modification,
resulting in yielding FNs of ReDeBug and VUDDY.

FPs of ReDeBug and VUDDY. The reasons for FPs in
ReDeBug were the lack of code normalization and the ex-
clusion of function semantics. Security patch may contain
non-security changes (e.g., comments changes). Owing to the
lack of code normalization, ReDeBug misinterpreted that the

Table 4: Accuracy of ReDeBug, VUDDY, and MOVERY in vulnerable code clone discovery.

Target software #Discovered
VCCs

ReDeBug VUDDY MOVERY

#TP #FP #FN Precision Recall #TP #FP #FN Precision Recall #TP #FP #FN Precision Recall
ReactOS 210 31 9 179 0.78 0.15 8 0 202 1.00 0.04 207 3 3 0.99 0.99
OpenCV 72 38 15 34 0.72 0.53 26 2 46 0.93 0.36 72 3 0 0.96 1.00

Emscripten 56 22 8 34 0.73 0.39 9 1 47 0.90 0.16 50 4 6 0.93 0.89
FreeBSD 33 25 44 8 0.36 0.76 6 16 27 0.27 0.18 27 4 6 0.87 0.82

Crown 23 22 2 1 0.92 0.96 14 2 9 0.88 0.61 23 2 0 0.92 1.00
OpenMVG 23 15 5 8 0.75 0.65 4 0 19 1.00 0.17 19 0 4 1.00 0.83
ArangoDB 6 4 1 2 0.80 0.67 2 0 4 1.00 0.33 6 2 0 0.75 1.00

FFmpeg 5 2 2 3 0.50 0.40 0 1 5 0.00 0.00 5 1 0 0.83 1.00
Redis 5 3 0 2 1.00 0.60 3 0 2 1.00 0.60 5 0 0 1.00 1.00
Git 1 1 1 0 0.50 1.00 0 0 1 N/A 0.00 1 0 0 1.00 1.00

Total 434 163 87 271 0.65 0.38 72 22 362 0.77 0.17 415 19 19 0.96 0.96

Table 5: VCCs that are hardly discovered by existing techniques.
Types Description

T1 VCCs without code lines deleted in security patches.
T2 VCCs with various syntaxes derived from fo.
T3 VCCs with heavy syntax change.

Listing 10: A patch snippet for CVE-2017-14039 in OpenJPEG.
1 static OPJ_BOOL opj_j2k_write_sot(opj_j2k_t *p_j2k, ...,
2 const opj_stream_private_t *p_stream,
3 opj_event_mgr_t * p_manager){
4 ...
5 OPJ_UNUSED(p_stream);
6 - OPJ_UNUSED(p_manager);

code to which non-security changes were not applied to be
vulnerable. In addition, ReDeBug misinterpreted a patched
function as vulnerable when the last few added code lines are
the same as the code lines before the added code lines [17,49].
The FPs of VUDDY were caused by abstraction; if a security
patch only fixes VUDDY’s abstraction targets (e.g., variable
names), VUDDY cannot differentiate between vulnerable and
patched functions, producing FPs.

The accuracy of MOVERY. Table 5 summarizes the types
of VCCs that were discovered by MOVERY but hardly discov-
ered by ReDeBug and VUDDY. Among the 396 VCCs (TPs)
discovered by MOVERY, 32 VCCs (8%) belonged to T1, and
221 VCCs (56%) showed a higher code similarity with fo than
that with fd (T2); 166 of 221 VCCs exhibited that the code
similarity with fd was less than 50% (T3). Because MOVERY
can address the modified OSS reuse, it could discover such
VCCs. Using selective abstraction, MOVERY could eliminate
21 out of 22 FPs reported by VUDDY. MOVERY could dis-
cover 34 Type-2 [34] VCCs that ReDeBug could not discover.

However, MOVERY produced FPs when the abstraction
was applied to similar code lines in a function. For example,
after applying abstraction, both lines #5 and #6 in Listing 10
are converted to “FCALL(PARAM);”. Hence, even if the patch
was applied, MOVERY misinterpreted that the vulnerable line
still existed, producing an FP. Another reason for FPs is syn-
tactically similar functions. Suppose that security patches p
and p′ are applied to syntactically similar functions f and f ′,
respectively. In such rare cases, MOVERY misinterprets that
p′ (resp. p) is not applied to f (resp. f ′), producing FPs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ReactOS OPENCV EMSCRIPTEN FreeBSD CROWN

OpenMVG ArangoDB FFmpeg Redis Git

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1
-s
co
re
Threshold

Figure 3: Experimental results for measuring efficiency of θ.

MOVERY reported FNs when semantically similar but syn-
tactically changed code appeared (e.g., for → while), or when
the similarity between a VCC and the vulnerable function
was less than θ. However, simply decreasing θ may yield
more FPs; we believe that the current MOVERY approach
offers a good balance of precision and recall, as MOVERY
significantly outperformed existing techniques.

Threshold sensitivity. We used the θ value as 0.5 in the
VCC discovery experiments. To measure threshold sensitivity,
we evaluated each VCC discovery result of MOVERY while
increasing θ by 0.1 from 0 to 1. Because it is infeasible to
verify the numerous newly discovered VCCs, we measured
the precision and recall with each θ based on the previously
discovered 434 VCCs. In addition, we evaluated each θ by
measuring the F1-score [45]

(2∗precision∗recall
precision+recall

)
, as we focused

on the balance between precision and recall.
Figure 3 presents the measurement results. We confirmed

that the F1-score appeared the highest when θ was 0.5. For
Crown and Emscripten, the F1-score was higher when θ is
greater than 0.5; this is because the ratio of modified VCCs
was small and thus FPs decreased at higher θ. Overall, the
precision drops when θ is less than 0.5, while recall decreases
when θ is greater than 0.6. Hence, we believe that θ of 0.5
maintains a good balance between high precision and recall.

One thing to note is that MOVERY can discover 15 VCCs
that were not discovered in the previous experiments when it
utilizes θ less than 0.5. In contrast, MOVERY still produces
4 FNs and 3 FPs even when θ is 0 and 1, respectively; we
discuss this issue in Section 6 in detail.

Table 6: VCC discovery results of MVP and CENTRIS.
Name #VCCs∗ #TP #FP #FN #Unique† Precision Recall
MVP 266 220 46 184 8 0.83 0.54

CENTRIS 553 281 272 152 37 0.51 0.65
*: #VCCs discovered for ten target software, †: #VCCs not discovered by MOVERY.

5.2 Comparison with MVP
We then compare MOVERY with MVP [49], a recurring vul-
nerability detection technique, to demonstrate that MOVERY
is more effective in discovering VCCs from modified compo-
nents. Since MVP is not available owing to the commercial
issue, we implemented MVP based on their paper [49] with
their default options.

Result analysis. When we applied MVP to ten target software,
it discovered 220 VCCs (i.e., TPs) while reporting 46 FPs and
184 FNs (see Table 6). It is noteworthy that MVP hardly dis-
covered VCCs belonging to T1 and T2 (see Table 5), because
MVP does not consider internal OSS modifications. MVP can
only discover VCCs that contain all the code lines deleted
from the security patch, and therefore it failed to discover 32
VCCs that do not contain such deleted code lines (T1). In
addition, MVP failed to discover 142 VCCs with various syn-
taxes derived from fo (T2). Specifically, variable types and
caller function names in vulnerable functions are frequently
changed during internal OSS modifications; MVP does not
consider such changes, thereby yielding FNs. The remaining
FNs were caused by semantically similar but syntactically
changed code and threshold issues, similar to MOVERY.

MVP produced 46 FPs owing to the (1) syntactically simi-
lar functions and (2) the abstraction method. MVP misinter-
preted a safe function as vulnerable when the function has a
similar syntax to the vulnerable function but is semantically
different (11 FPs). The remaining 35 FPs were caused by
the abstraction method: if the security patch only fixes the
abstraction targets of MVP (e.g., variable names), MVP fails
to differentiate between a vulnerable function and a patched
function, producing FPs. Note that MOVERY could eliminate
31 of 35 FPs by utilizing the selective abstraction method.

Finally, MVP discovered 8 VCCs that MOVERY misses;
all of these are VCCs with syntax similarities less than θ to
the disclosed vulnerable functions; two of these VCCs were
also not found in VUDDY and ReDeBug.

Our analysis results affirmed that MVP, which is not ca-
pable of addressing internal OSS modifications, may not be
effective in discovering VCCs from modified components as
it reported much more FNs (i.e., 184 FNs) than MOVERY.

Threats to validity. Although we implemented MVP based
on their paper, some functions may not be reproduced per-
fectly. In addition, the purpose of MVP is to detect recur-
ring vulnerabilities and not to discover propagated vulnerable
codes. Our intention is not to deny the effectiveness of MVP,
but to demonstrate that MOVERY is more efficient in discov-
ering VCCs from modified components.

5.3 Comparison with CENTRIS

Several existing approaches (e.g., [9, 48]), including com-
mercial tools such as Trivy [1] and Black Duck [38], have
attempted to discover vulnerabilities contained in OSS com-
ponents by clarifying reused OSS components and their ver-
sions. However, they do not seem to consider the modified
OSS reuse, and further, they do not disclose detailed vulnera-
bility discovery algorithms (even their algorithms frequently
change). Hence, we decided to compare the VCC discov-
ery results of MOVERY with CENTRIS [48], a recent SCA
technique for identifying modified OSS components.

To investigate the vulnerabilities that affect the identified
components, we utilized the “product search” and “version
search” provided by CVE Details [7], i.e., functionalities for
providing CVEs that affect a given software name and version.
For every component identified in each target software, we in-
vestigated CVEs affecting the component and then considered
them the VCCs discovered by CENTRIS.

Result analysis. In our experiments, CENTRIS-based ap-
proach discovered 553 VCCs in ten target software, of which
272 (49%) VCCs were confirmed to be FPs (see Table 6).
Such FPs occurred when: (1) the vulnerable code was not
reused, or (2) the vulnerable code was patched through back-
porting (an example is introduced in Section 2.2).

Furthermore, the CENTRIS-based approach failed to dis-
cover 152 (38%) out of 396 VCCs discovered by MOVERY, es-
pecially when (1) there is a vulnerability in a component that
CENTRIS failed to identify, or (2) CENTRIS predicted incor-
rect version information. Finally, CENTRIS-based approach
discovered 37 VCCs that were not discovered by MOVERY.
We observed that all of them were the cases where security
patches did not be released via Git; if these patches are added
to our dataset, MOVERY can also discover them.

Consequently, we confirmed that discovering vulnerabili-
ties simply based on the component name and version pro-
duced many false results, especially FPs (i.e., 272 FPs), owing
to the OSS modifications. This demonstrates that MOVERY
considerably outperformed the SCA-based approach in terms
of discovering vulnerabilities from modified components.

5.4 Speed and scalability of MOVERY

In this section, we evaluate the speed and scalability of
MOVERY in VCC discovery. We classify the total time tak-
ing to discover VCCs into signature generation (i.e., the
elapsed time for generating signatures), target preprocessing
(i.e., the elapsed time for analyzing the target software), and
matching times (i.e., the elapsed time required to discover the
VCCs). We measured all the times for MOVERY, ReDeBug,
and VUDDY, and then compared the results.

Signature generation time. The signature generation time
using the collected 4,219 security patches (see Table 2) was
2 h in VUDDY and 32 h in MOVERY; because ReDeBug

(a) Target preprocessing times. (b) Matching times. (c) Total times (preprocessing + matching).
Figure 4: Target preprocessing and matching time spent on target software with various sizes.

utilized the security patches as they were, there was no need
for signature generation time. Unlike VUDDY, which simply
extracts vulnerable functions, MOVERY required more time
as it needed to reconstruct the oldest vulnerable functions and
analyze the code line dependencies of functions; note that the
signature generation is a one-time task.

Target preprocessing and matching times. Figure 4 shows
the target preprocessing and matching times for the three tools.
The results present the following three main observations.

(1) VUDDY requires the longest target preprocessing time.
(2) MOVERY requires the longest matching time.
(3) In total elapsed time, MOVERY requires the least amount

of time and VUDDY requires the longest time (owing to
its long preprocessing time).

To precisely discover VCCs, MOVERY used the finer granular-
ity (i.e., a set of code lines) that is slower than function units
in VCC discovery [17], and further considered dependencies
of code lines in matching, resulting in a longer matching time
than ReDeBug and VUDDY. Nevertheless, (1) target prepro-
cessing and matching could be performed within 200 s in
MOVERY per target software (i.e., the fastest among the three
tools) and (2) the time was not significantly increased even
when the lines of code of the target software varied from
213 K to 14.5 M (see Table 3), suggesting that MOVERY is
sufficiently fast and scalable for practical use.

5.5 Efficacy of the search space reduction
To reduce the VCC search space, MOVERY focuses only on
the borrowed code parts of the target software. Here we eval-
uate the efficacy of the search space reduction technique.

Scalability improvement. The cumulative number of direc-
tories and code lines in ten target software were 539,781 and
28,548,340, respectively. When considering only borrowed
code parts, the number of directories decreases to 375,489
(70%), and the number of code lines to be scanned was re-
duced by 15,130,620 (53%), suggesting that MOVERY can
skip approximately half of the software’s codebase that does
not need to be scanned, which ensures higher scalability.

Accuracy enhancement. In addition, we confirmed that fo-
cusing on borrowed code parts can reduce FPs in VCC discov-
ery. Existing approaches search VCCs for the entire codebase;
searching for “propagated” VCCs outside the “reuse” code
regions makes existing approaches misinterpret a function,

which has similar syntax but completely different semantics
with vulnerability signature, as a VCC, thereby producing
more FPs. Quantitatively, 3 FPs and 24 FPs of VUDDY and
ReDeBug were discovered outside of the “reuse” code re-
gions, respectively. MOVERY was able to reduce such FPs by
considering only the vulnerabilities of the reused OSS and
the code parts where the OSS exists.

5.6 Case study: Vulnerability in Git
MOVERY discovered that the fix for CVE-2019-9169 (i.e.,
a heap-based buffer over-read vulnerability existed prior to
Glibc v2.30) is not applied to the latest version of Git, which
is one of the most popular version control systems. Since
Git reused an older version of Glibc earlier than v2.27, the
syntax of the VCC discovered in Git was quite different (i.e.,
the syntax similarity was 65%) from that specified in the
disclosed patch for CVE-2019-9169. Worse, we confirmed
that this vulnerability can still cause memory leaks in the
latest version of Git. We responsibly reported this to the Git
team; they confirmed our report and replied that it will be
addressed in a later task because they determined that this
vulnerability does not presently pose a serious threat (we
discuss responsible vulnerability disclosure in Section 6).

6 Discussion

Threshold setting. We used two threshold values: we skipped
normalized code lines when the number of characters is less
than 15, and used θ of 0.5 in the experiment. Since the related
experiments of the latter case were introduced in Section 5.1,
here we only discuss the former case.

Skipping short code lines was determined from our obser-
vations: when we manually inspected normalized code lines
with less than 15 characters, more than 90% were observed as
frequently appearing in non-vulnerable codes such as return
statements, common-named variable declarations, parenthe-
ses, “else”, and “continue” statements. If the vulnerability
signature includes such a short code line, it could potentially
lead MOVERY to produce FPs. When we slightly increased
the character-length limit (e.g., 16 or 17), we observed that the
ratio of non-vulnerable code lines decreased. Therefore, we
set the threshold value as 15 characters. Note that this thresh-
old is dependent on the vulnerability dataset. If MOVERY
is applied in a different vulnerability dataset, this threshold
needs to be adjusted.

Use of the oldest vulnerable function. When generating sig-
natures, MOVERY considers the oldest vulnerable function to
address internal OSS modifications. In fact, MOVERY can use
any older version’s vulnerable function whose syntax differs
from the disclosed vulnerable function; the reason for select-
ing the oldest one is to cover more internal modifications.

We introduce the rationale behind considering only the
common code line between the oldest (fo) and disclosed vul-
nerable functions (fd). Suppose we want to extract essential
vulnerable code lines (see Section 3.1) from the vulnerable
functions. Such essential vulnerable code lines can (1) exist
in both fo and fd , (2) not exist in both fo and fd , or (3) exist
in either one. Let vo be the oldest vulnerable version, and vd
be the latest (i.e., disclosed) vulnerable version. Here we can
make two inferences. First, if the essential vulnerable code
lines do not exist in both fo and fd , then vo and vd should be
excluded from the versions affected by vulnerability. Next, if
the essential vulnerable code lines exist only in fd and not in
fo, then vo should be left out of the affected versions.

Based on these inferences, we can conclude that the es-
sential vulnerable code lines are simultaneously included in
fo and fd as long as the version information affected by the
vulnerability includes both vo and vd . In this context, we can
justify our approach as long as the NVD, which is our data
source (see Section 4.1), provides correct CPE.

Vulnerability disclosure. We reported 14 triggerable VCCs
(e.g., using Proofs-of-Concept), which were discovered in
the target software such as Git and OpenMVG, and in other
popular OSS projects such as LibAV and LibGDX, to the
development teams; it is noteworthy that 10 out of 14 VCCs
were discovered only in MOVERY and not in previous VCC
discovery techniques (e.g., [14, 17, 49]).

(1) Vulnerability confirmed.Nine development teams con-
firmed our vulnerability reports, of which two of them
were patched, and another two of them will be resolved.

(2) Under discussions. For the remaining five cases, we are
still discussing or waiting for answers (e.g., LibAV and
OpenMVG), of which one pull request is pending.

Other VCCs that have not yet been successfully reproduced
are on hold to report because we can hardly receive a response
from the development teams even if reported. We will not
disclose any VCCs until a security patch is applied, and we
plan to trigger such VCCs with the help of a collaborator or
refer to the related approaches (e.g., [18, 27]) for triggering a
propagated vulnerability; if a VCC is successfully reproduced,
we will immediately report it to the development team.

Limitations. MOVERY leverages some assumptions that can
limit its application. First, MOVERY can discover VCCs when
the source code for the target software is available; if the
control and data dependencies of functions in a binary can be
accurately investigated, we expect that the methodology of
MOVERY may be applied to binary-level VCC discovery.

Second, NVD may provide incorrect CPEs for some
CVEs [8,47], which could impair the accuracy of reconstruct-
ing older vulnerable functions. Although we manually verified
the CPEs (see Section 4.1), this is inefficient for practical use,
and if the correct version range (CPEs) of a vulnerability is
provided, the effectiveness of MOVERY will be improved.

Third, MOVERY considers vulnerabilities within functions
and cannot discover VCCs whose patches are out of functions
(e.g., inter-functional or C preprocessor-dependent vulnera-
bilities). Because MOVERY considers a function as a basic
unit, it cannot address C preprocessor-dependent vulnerabili-
ties, but we are considering addressing inter-functional vul-
nerabilities by including the correlation information of such
inter-functions (e.g., inter-function data flows) into signatures.

Last, even if we set θ to extremes (i.e., 0 and 1), MOVERY
still produces 4 FNs and 3 FPs; FNs were caused by VCCs
with similar semantics but syntactically changed code, and
FPs were produced owing to the syntactically similar func-
tions with different patches applied (see Section 5.1). If
MOVERY can handle Type-4 clones and if abstraction is not
used, such FNs and FPs can be reduced, respectively. How-
ever, this may rather compromise the scalability and accuracy
of MOVERY. Therefore, we retain the current MOVERY ap-
proach, which showed much superior performance than the
existing approaches, and leave solving FPs and FNs that are
independent of θ for future work.

7 Related Work

In this section, we introduce a number of related techniques.

Code clone detection techniques. There are numerous tech-
niques attempting to detect code clones (e.g., [4,10,15,16,24,
28, 29, 33–36, 41, 42]). However, their concern is not discov-
ering a vulnerable code clone; because such techniques do
not consider the vulnerability characteristics, they yield many
FPs when applied to VCC discovery [17, 49].

Software composition analysis techniques. Several tech-
niques attempt to identify OSS components in the target soft-
ware (e.g., [2, 9, 21, 25, 39, 48, 51, 52]); some of these can
be applied to discover known vulnerabilities in OSS compo-
nents. For example, Duan et al. [9] proposed OSSPolice to
identify 1-day security vulnerabilities from the libraries of an
Android application. OSSPolice utilized constant features to
extract the versions of libraries, and determined if vulnerable
versions were used in the target Android application. Zhan
et al. [51] proposed ATVHunter to precisely detect versions
of third-party libraries by using the control flow informa-
tion of an Android application. Using the identified versions,
ATVHunter verified whether the target application contained
known security vulnerabilities. However, if developers back-
port security patches to the vulnerability or do not reuse the
vulnerable code, these techniques produce FPs (see Section
5.3). Hence, they are insufficient to solve our target problem.

VCC discovery techniques. Jang et al. proposed ReDe-
Bug [14], which is a token-based VCC discovery approach
using the slicing window technique. Kim et al. proposed
VUDDY [17], a function-level scalable VCC discovery tech-
nique. Bowman et al. proposed VGRAPH [3], a CPG-based
VCC discovery technique, which is more robust to code mod-
ification, especially for Type-3 code clones. Xiao et al. pro-
posed MVP [49], a recurring vulnerability detection approach.
By considering only the sliced code lines that are directly
related to vulnerabilities, MVP can discover VCCs with low
syntax similarity of disclosed vulnerable functions.

However, these existing techniques (1) cannot precisely
discover modified VCCs caused by internal OSS modifica-
tions, and (2) can only discover VCCs with code lines that
have been deleted from security patches, thereby showing
low accuracy when applied to our target problem (see Sec-
tion 5.1 and Section 5.2). Some other techniques attempted
to discover vulnerable codes based on learning algorithms
(e.g., [22, 23]) or to detect buggy codes (e.g., [20, 26]). They
hold the promise of detecting general vulnerable or buggy
code, however, they are not capable of precisely discovering
VCCs propagated by modified OSS reuse.

8 Conclusion

Discovering propagated vulnerabilities from modified OSS
components is a pressing issue, because unpatched vulnerabil-
ities can pose a critical threat to the entire software. In regards
to this, we present MOVERY, a precise approach that discov-
ers VCCs from modified OSS components. Our experimen-
tal results affirmed that MOVERY significantly outperformed
existing VCC discovery techniques in terms of VCC discov-
ery accuracy. Equipped with VCC discovery results from
MOVERY, developers can address potential threats caused
by propagated vulnerabilities in modified OSS components,
rendering a safer software ecosystem.

Acknowledgment

We appreciate the anonymous reviewers for their valuable
comments to improve the quality of the paper. This work
was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2019-0-01697 Develop-
ment of Automated Vulnerability Discovery Technologies
for Blockchain Platform Security, No.2022-0-01198 Conver-
gence Security Core Talent Training Business, and No.IITP-
2022-2020-0-01819 ICT Creative Consilience program).

Availability

The source code of MOVERY is publicly available at
GitHub: https://github.com/wooseunghoon/MOVERY-
public.

References

[1] Aqua Security. Trivy: scanner for vulnerabilities in
container images, file systems, and Git repositories,
as well as for configuration issues, 2022. https:
//aquasecurity.github.io/trivy/v0.22.0/.

[2] Michael Backes, Sven Bugiel, and Erik Derr. Reliable
Third-Party Library Detection in Android and its Se-
curity Applications. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 356–367, 2016.

[3] Benjamin Bowman and H Howie Huang. VGRAPH:
A Robust Vulnerable Code Clone Detection System
Using Code Property Triplets. In Proceedings of the
5th IEEE European Symposium on Security and Privacy
(EuroS&P), pages 53–69, 2020.

[4] Lutz Büch and Artur Andrzejak. Learning-Based Re-
cursive Aggregation of Abstract Syntax Trees for Code
Clone Detection. In Proceedings of the IEEE 26th In-
ternational Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 95–104, 2019.

[5] Common Weakness Enumeration. 2021 CWE
Top 25 Most Dangerous Software Weaknesses,
2021. https://cwe.mitre.org/top25/archive/
2021/2021_cwe_top25.html.

[6] Ctags. Universal Ctags, 2021. https://github.com/
universal-ctags/ctags.

[7] CVE Details. The Ultimate Security Vulnerability Data
source, 2021. https://www.cvedetails.com.

[8] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing,
Yuqing Zhang, and Gang Wang. Towards the detec-
tion of inconsistencies in public security vulnerability
reports. In Proceedings of the 28th USENIX Security
Symposium (Security), pages 869–885, 2019.

[9] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and
Wenke Lee. Identifying Open-Source License Violation
and 1-day Security Risk at Large Scale. In Proceed-
ings of the 24th ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2169–2185,
2017.

[10] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Ke-
shani, Masoumeh Soleimani Zavosht, Abbas Hey-
darnoori, and Vladimir Filkov. Cross-project code
clones in GitHub. Empirical Software Engineering,
pages 1–36, 2018.

[11] GitHub. The GitHub Blog - Thank you for 100 million
repositories, 2018. https://github.blog/2018-
11-08-100m-repos/.

https://github.com/wooseunghoon/MOVERY-public
https://github.com/wooseunghoon/MOVERY-public
https://aquasecurity.github.io/trivy/v0.22.0/
https://aquasecurity.github.io/trivy/v0.22.0/
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://github.com/universal-ctags/ctags
https://github.com/universal-ctags/ctags
https://www.cvedetails.com
https://github.blog/2018-11-08-100m-repos/
https://github.blog/2018-11-08-100m-repos/

[12] GitHub. The 2020 State of the OCTOVERSE, 2020.
https://octoverse.github.com/.

[13] Red Hat. Backporting Security Fixes, 2021.
https://access.redhat.com/security/
updates/backporting.

[14] Jiyong Jang, Abeer Agrawal, and David Brumley. Re-
DeBug: Finding Unpatched Code Clones in Entire OS
Distributions. In Proceedings of the 33rd IEEE Sympo-
sium on Security and Privacy (SP), pages 48–62, 2012.

[15] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. DECKARD: Scalable and Accurate
Tree-based Detection of Code Clones. In Proceedings
of the 29th International Conference on Software Engi-
neering (ICSE), pages 96–105, 2007.

[16] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: A Multilinguistic Token-Based Code Clone
Detection System for Large Scale Source Code. IEEE
Transactions on Software Engineering, 28(7):654–670,
2002.

[17] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. VUDDY: A Scalable Approach for Vulnerable
Code Clone Discovery. In Proceedings of the 38th
IEEE Symposium on Security and Privacy (SP), pages
595–614, 2017.

[18] Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong,
and Heejo Lee. OCTOPOCS: Automatic Verification of
Propagated Vulnerable Code Using Reformed Proofs of
Concept. In Proceedings of the 51st Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 174–185, 2021.

[19] Frank Li and Vern Paxson. A Large-Scale Empirical
Study of Security Patches. In Proceedings of the 24th
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 2201–2215, 2017.

[20] Jingyue Li and Michael D Ernst. CBCD: Cloned Buggy
Code Detector. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), pages 310–
320, 2012.

[21] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Ding-
hao Wu, Jian Liu, Rui Xue, and Wei Huo. LibD: Scal-
able and Precise Third-party Library Detection in An-
droid Markets. In Proceedings of the 39th International
Conference on Software Engineering (ICSE), pages 335–
346. IEEE, 2017.

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao
Qi, and Jie Hu. VulPecker: An Automated Vulnerability
Detection System Based on Code Similarity Analysis.

In Proceedings of the 32nd Annual Conference on Com-
puter Security Applications (ACSAC), pages 201–213,
2016.

[23] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin,
Sujuan Wang, Zhijun Deng, and Yuyi Zhong. VulDeeP-
ecker: A Deep Learning-Based System for Vulnerability
Detection. In Proceedings of the 25th Annual Network
and Distributed System Security Symposium (NDSS),
2018.

[24] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A Tool for Finding Copy-paste and
Related Bugs in Operating System Code. In Proceed-
ings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI), volume 4, pages 289–302,
2004.

[25] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen.
LibRadar: Fast and Accurate Detection of Third-party
Libraries in Android Apps. In Proceedings of the
38th International Conference on Software Engineer-
ing: Companion (ICSE-Companion), pages 653–656,
2016.

[26] Manishankar Mondal, Chanchal K Roy, and Kevin A
Schneider. Identifying Code Clones having High Pos-
sibilities of Containing Bugs. In Proceedings of the
IEEE/ACM 25th International Conference on Program
Comprehension (ICPC), pages 99–109, 2017.

[27] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities. In Proceedings of the 27th USENIX
Security Symposium (Security), pages 919–936, 2018.

[28] Ginger Myles and Christian Collberg. K-gram Based
Software Birthmarks. In Proceedings of the 20th ACM
Symposium on Applied Computing (SAC), pages 314–
318, 2005.

[29] Manziba Akanda Nishi and Kostadin Damevski. Scal-
able code clone detection and search based on adap-
tive prefix filtering. Journal of Systems and Software,
137:130–142, 2018.

[30] NVD. Common Platform and Enumeration (CPE), 2021.
https://nvd.nist.gov/products/cpe.

[31] NVD. National Vulnerability Database, 2021. https:
//nvd.nist.gov/.

[32] Henning Perl, Sergej Dechand, Matthew Smith, Daniel
Arp, Fabian Yamaguchi, Konrad Rieck, Sascha Fahl, and
Yasemin Acar. VCCFinder: Finding Potential Vulnera-
bilities in Open-Source Projects to Assist Code Audits.
In Proceedings of the 22nd ACM SIGSAC Conference on

https://octoverse.github.com/
https://access.redhat.com/security/updates/backporting
https://access.redhat.com/security/updates/backporting
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/
https://nvd.nist.gov/

Computer and Communications Security (CCS), pages
426–437, 2015.

[33] Chanchal K Roy and James R Cordy. NICAD: Accu-
rate Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code Normalization. In
Proceedings of the 16th IEEE International Conference
on Program Comprehension (ICPC), pages 172–181,
2008.

[34] Chanchal Kumar Roy and James R Cordy. A Survey on
Software Clone Detection Research. Queen’s School of
Computing TR, 541(115):64–68, 2007.

[35] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chan-
chal K Roy, and Cristina V Lopes. SourcererCC: Scaling
Code Clone Detection to Big-Code. In Proceedings of
the 38th International Conference on Software Engi-
neering (ICSE), pages 1157–1168, 2016.

[36] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and
Katsuro Inoue. CCFinderSW: Clone Detection Tool
with Flexible Multilingual Tokenization. In Proceedings
of the 24th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 654–659, 2017.

[37] Synopsys. Open source security and risk analysis report
(OSSRA), 2021.

[38] Synopsys. Black Duck Software: Software Composition
Analysis, 2022. https://www.blackducksoftware.
com/.

[39] Wei Tang, Du Chen, and Ping Luo. BCFinder: A
Lightweight and Platform-independent Tool to Find
Third-party Components in Binaries. In Proceedings of
the 25th Asia-Pacific Software Engineering Conference
(APSEC), pages 288–297. IEEE, 2018.

[40] TechRepublic. Backward compatibility is-
sues can derail your development efforts, 2001.
https://www.techrepublic.com/article/
backward-compatibility-issues-can-derail-
your-development-efforts/.

[41] Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, and
Zoran Budimac. LICCA: A Tool for Cross-Language
Clone Detection. In Proceedings of the IEEE 25th In-
ternational Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 512–516, 2018.

[42] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun
Xu, and Chanchal K Roy. CCAligner: A Token Based
Large-Gap Clone Detector. In Proceedings of the
40th International Conference on Software Engineering
(ICSE), pages 1066–1077, 2018.

[43] Wikipedia. Backporting, 2021. https://en.
wikipedia.org/wiki/Backporting.

[44] Wikipedia. Backward compatibility, 2021.
https://en.wikipedia.org/wiki/Backward_
compatibility.

[45] Wikipedia. F-score, 2022. https://en.wikipedia.
org/wiki/F-score.

[46] Wikipedia. Jaccard Index, 2022. https://en.
wikipedia.org/wiki/Jaccard_index.

[47] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo
Lee, and Sven Dietrich. V0Finder: Discovering the
Correct Origin of Publicly Reported Software Vulner-
abilities. In Proceedings of the 30th USENIX Security
Symposium (Security), pages 3041–3058, 2021.

[48] Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo
Lee, and Hakjoo Oh. CENTRIS: A Precise and Scalable
Approach for Identifying Modified Open-Source Soft-
ware Reuse. In Proceedings of the IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE),
pages 860–872, 2021.

[49] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu,
Zimu Yuan, Feng Li, Binghong Liu, Yang Liu, Wei Huo,
Wei Zou, and Wenchang Shi. MVP: Detecting Vulnera-
bilities using Patch-Enhanced Vulnerability Signatures.
In Proceedings of the 29th USENIX Security Symposium
(Security), pages 1165–1182, 2020.

[50] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad
Rieck. Modeling and Discovering Vulnerabilities with
Code Property Graphs. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (SP), pages 590–
604. IEEE, 2014.

[51] Xian Zhan, Lingling Fan, Sen Chen, Feng Wu, Tian-
ming Liu, Xiapu Luo, and Yang Liu. ATVHunter: Re-
liable Version Detection of Third-Party Libraries for
Vulnerability Identification in Android Applications. In
Proceedings of the 43rd International Conference on
Software Engineering (ICSE), pages 1695–1707. IEEE,
2021.

[52] Xian Zhan, Tianming Liu, Lingling Fan, Li Li, Sen Chen,
Xiapu Luo, and Yang Liu. Research on Third-Party Li-
braries in Android Apps: A Taxonomy and Systematic
Literature Review. IEEE Transactions on Software En-
gineering, 2021.

https://www.blackducksoftware.com/
https://www.blackducksoftware.com/
https://www.techrepublic.com/article/backward-compatibility-issues-can-derail-your-development-efforts/
https://www.techrepublic.com/article/backward-compatibility-issues-can-derail-your-development-efforts/
https://www.techrepublic.com/article/backward-compatibility-issues-can-derail-your-development-efforts/
https://en.wikipedia.org/wiki/Backporting
https://en.wikipedia.org/wiki/Backporting
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/F-score
https://en.wikipedia.org/wiki/F-score
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index

Figure 5: Types of code modifications in VCCs.

Appendix A Code modification types of VCCs

We analyzed 415 VCCs discovered by MOVERY to better
understand the types of code modifications. Figure 5 shows
the analysis results; note that a VCC may contain multiple
code modification types.

It is worth noting that the variable names and variable types
of the discovered VCCs are mostly different from disclosed
vulnerable functions. We confirmed that most of these cases
were caused by internal OSS modifications. Approaches using
the abstraction method such as MOVERY, VUDDY, and MVP
could address this type of code modification.

Moreover, we confirmed that the cases, in which code lines
of the disclosed vulnerable function were deleted or new code
lines were added, accounted for more than 80% of the discov-
ered VCCs. MOVERY, considering only the core lines of the
vulnerable code, could respond to this code modification, but
VUDDY, considering the syntax of the entire vulnerable func-
tion, hardly discovered VCC to which this code modification
was applied.

All code modification types should be considered in VCC
discovery. We confirmed that MOVERY’s extensible and min-
imized signature generation made this possible while other
existing approaches failed to handle some types of code mod-
ifications (as demonstrated in Section 5.1).

Out-of-bounds Read

Out-of-bounds Write
Improper Restriction of Operations
within the Bounds of a Memory Buffer

Improper Input Validation

Integer Underflow

(a) Top 5 CWE distribution. (b) CVSS distribution.

Figure 6: CWE and CVSS distributions for the discovered VCCs
by MOVERY.

Appendix B Analysis for the discovered VCCs

In our experiments, MOVERY discovered 415 VCCs for ten
target software. We analyzed the vulnerability types (i.e.,
Common Weakness Enumeration, shortly CWE) and severity
(i.e., Common Vulnerability Scoring System, shortly CVSS)
for the discovered VCCs. Figure 6 depicts the analysis results.

First, we confirmed that the 415 discovered VCCs belonged
to 22 CWE groups; the distribution for the top five CWEs
is shown in Figure 6a. The most frequently appeared type
is “Out-of-bounds Read and Write” (53%); this vulnerabil-
ity can lead to remote code execution and therefore requires
extra attention. In addition, we confirmed that many vulnera-
bilities related to memory buffer (11%) and input validation
(7%) appeared; the top four CWEs groups belong to the most
dangerous vulnerability types in 2021 [5].

Next, we confirmed that most (84%) of the discovered
VCCs had a medium severity, as shown in Figure 6b. Note
that 15% of the propagated vulnerabilities had a high severity,
which could pose a more critical threat to the entire software;
it is noteworthy that the case study presented in Section 5.6 is
a high-severity vulnerability. Especially high-risk vulnerabili-
ties need to be discovered and patched more quickly, suggest-
ing that there is in dire need of a precise VCC discovery tool,
such as MOVERY.

	Introduction
	Motivation
	Problem statement
	Motivating examples

	Methodology of Movery
	Signature generation (P1)
	Vulnerable code clone discovery (P2)

	Implementation of Movery
	Vulnerability dataset
	Architecture

	Evaluation
	Accuracy of Movery
	Comparison with MVP
	Comparison with Centris
	Speed and scalability of Movery
	Efficacy of the search space reduction
	Case study: Vulnerability in Git

	Discussion
	Related Work
	Conclusion
	Code modification types of VCCs
	Analysis for the discovered VCCs

