
Dicos: Discovering Insecure Code Snippets from Stack Overflow
Posts by Leveraging User Discussions

Hyunji Hong

Department of Computer Science and

Engineering, Korea University

hyunji_hong@korea.ac.kr

Seunghoon Woo

Department of Computer Science and

Engineering, Korea University

seunghoonwoo@korea.ac.kr

Heejo Lee
∗

Department of Computer Science and

Engineering, Korea University

heejo@korea.ac.kr

ABSTRACT

Online Q&A fora such as Stack Overflow assist developers to solve

their faced coding problems. Despite the advantages, Stack Over-

flow has the potential to provide insecure code snippets that, if

reused, can compromise the security of the entire software.

We presentDicos, an accurate approach by examining the change

history of Stack Overflow posts for discovering insecure code snip-

pets. When a security issue was detected in a post, the insecure

code is fixed to be safe through user discussions, leaving a change

history. Inspired by this process, Dicos first extracts the change

history from the Stack Overflow post, and then analyzes the his-

tory whether it contains security patches, by utilizing pre-selected

features that can effectively identify security patches. Finally, when

such changes are detected, Dicos determines that the code snippet

before applying the security patch is insecure.

To evaluate Dicos, we collected 1,958,283 Stack Overflow posts

tagged with C, C++, and Android. When we applied Dicos on the

collected posts, Dicos discovered 12,458 insecure posts (i.e., 14,719
insecure code snippets) from the collected posts with 91% precision

and 93% recall. We further confirmed that the latest versions of 151

out of 2,000 popular C/C++ open-source software contain at least

one insecure code snippet taken from Stack Overflow, being discov-

ered by Dicos. Our proposed approach, Dicos, can contribute to

preventing further propagation of insecure codes and thus creating

a safe code reuse environment.

CCS CONCEPTS

• Security and privacy→ Software and application security.

KEYWORDS

Q&A forum; Insecure code snippet discovery; Software security.

ACM Reference Format:

Hyunji Hong, Seunghoon Woo, and Heejo Lee. 2021. Dicos: Discovering

Insecure Code Snippets from Stack Overflow Posts by Leveraging User

Discussions. In Annual Computer Security Applications Conference (ACSAC
’21), December 6–10, 2021, Virtual Event, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3485832.3488026

∗
Heejo Lee is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00

https://doi.org/10.1145/3485832.3488026

1 INTRODUCTION

Developers commonly leverage online Q&A fora such as Stack

Overflow and Quora [1, 7, 35], because copying and pasting code

snippets from Stack Overflow are being considered as improving

productivity and providing more stable code. However, this can

cause problemswhen developers reuse code snippets without under-

standing the code implications, such as the propagation of insecure

code snippets. In 2018, for example, there was an issue that Docker

could not be worked when Razor Synapse was running in the back-

ground [3]. According to a Reddit post, this issue was caused by

reusing the insecure code snippet from Stack Overflow [20].

The approach to resolving such issues consists of two steps: (1)

discovering insecure code snippets from Stack Overflow and (2)

detecting software containing the insecure code snippets. The prob-

lem is that the process of discovering insecure code snippets is

challenging, as opposed to the second step, which can be accom-

plished with techniques such as code clone detection [10, 11, 21, 30].

Existing approaches are limited in terms of the discovery cover-

age; most of them were only able to discover insecure code snip-

pets containing selected security-related APIs (e.g., cryptographic
APIs) [7, 23, 32, 34]. By contrast, unknown security patch detection

approaches [15, 18, 25] that can be used to discover insecure code

snippets, yield many false alarms owing to ineffective feature selec-

tion, e.g., they consider only the fragmentary characteristics of the

security patch [15] (details are introduced in section 7).

To overcome such shortcomings, we present Dicos (Discovering

Insecure COde Snippets), which is an accurate approach by exam-

ining the change history of Stack Overflow posts for discovering

insecure code snippets. The key idea of Dicos, unlike previous

approaches that have discovered insecure code snippets consider-

ing only the latest revision of a post, is the analysis of the change

history of a post based on user discussions.

Our approach. Dicos first selects effective features and then

discovers insecure code snippets by leveraging user discussions in

Stack Overflow.

Selecting effective features that prominent only in insecure codes

is challenging. The features used in existing approaches were either

too finer or too coarse, and thus not guarantee efficient insecure

code snippet discovery (see section 7). To address this challenge,

Dicos first collects a number of features that are used in previous

approaches, and then verifies their effectiveness using Common

Vulnerabilities and Exposures (CVE). In particular,Dicos attempted

to identify features that predominantly appear in CVE patches.

As a result, Dicos determines that the following three features

could be utilized effectively in discovering insecure code snippets:

(1) security-sensitive APIs, (2) security-related keywords, and (3)

control flow information (see section 3).

https://doi.org/10.1145/3485832.3488026
https://doi.org/10.1145/3485832.3488026

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Hyunji Hong, Seunghoon Woo, and Heejo Lee

Next, to discover insecure code snippets, Dicos leverages user
discussions in Stack Overflow. When a security issue was detected

in the code snippet, the insecure code is fixed to a safe one through

user discussions, leaving a change history (see subsection 2.1). In-

spired by this, Dicos first extracts the change history from the post,

analyzes the change history using selected three features, and then

determines whether the post contains insecure code snippets.

Dicos extracts the change history from the answer post; we pay

attention to the changes in description, comments, and code snip-

pets, which mainly changed when a security issue was reported and

fixed. In particular, extracting change history from code snippets is

error-prone because a post can contain multiple code snippets; com-

pletely different code snippets can be paired between the two post

revisions. To resolve this issue, Dicos cleaves each code snippet:

if a code snippet contains a function, Dicos extracts the function

and considers it as a new code snippet. Dicos then detects the most

similar code snippets between the two revisions of the post, deter-

mines them as a code snippet pair, and then extracts the change

history from the paired code snippets (see subsection 4.1).

Thereafter, Dicos analyzes the change history whether it con-

tains a security patch by using the three selected features. Dicos

determines that a change was a security patch if: (1) control flows

or (2) security-sensitive APIs of the code snippet were changed,

or (3) security-related keywords were added to the description or

comments. Finally, Dicos determines the older revision of a post

(i.e., before applying the detected security patch) containing two or

more features in its change history as the insecure post, and the code
snippet included in the insecure post as the insecure code snippet.

Evaluation. To evaluate Dicos, we collected 1,958,283 Stack

Overflow answer posts tagged with C, C++, and Android from

the SOTorrent dataset [2], of which 668,520 posts contained the

change history. In the experiment, Dicos discovered 12,458 inse-

cure posts (2%) with 14,719 insecure code snippets. To verify the

discovery results, we manually reviewed the following five groups

for C/C++ and Android insecure posts, respectively: (1) all posts

with three features, (2) the top 200 posts with two features (ranked

by #votes), (3) randomly selected 100 posts with two features (to

prevent biased validation results), (4) the top 200 posts with only

one feature, and (5) the top 100 posts without any features. Conse-

quently, we confirmed thatDicos discovered insecure code snippets

with 93% precision and 94% recall for C/C++ posts, with 86% pre-

cision and 89% recall for Android posts (details are presented in

subsection 5.2).

We then compared the discovery results of Dicos to those of

the closely related approaches [7, 23]. First, Dicos discovered 2,454

Android insecure posts in the same dataset with Fischer et al. [7],
which is 9 times more than that reported by their approach (i.e.,
278 insecure posts). Among their results, 62 were targets of Dicos

(i.e., posts containing code change history), and Dicos was able

to cover 50 out of 62 insecure posts (81%). Next, Dicos discovered

7,241 C/C++ insecure posts in the same dataset with Verdi et al. [23],
which is 105 times more than that discovered by them (i.e., 69
insecure posts). Among their results, 36 were targets of Dicos, and

Dicos was able to discover 22 of them (61%) as insecure. The result

Question

Answer

Comments

Code snippet

Description

Figure 1: Example Stack Overflow post (#122721). We divide

a post into three parts: question, answer, and comments; the

answer is further subdivided into code snippet and descrip-

tion (i.e., narrative part excluding code snippets).

demonstrates the effectiveness of Dicos as it can cover a large pro-

portion of the insecure posts discovered by the existing approaches

while discovering more hidden insecure posts (see subsection 5.3).

We further detected propagated insecure code snippets in the

latest versions of 2,000 popular C/C++ open-source software (OSS)

using the existing code clone detection technique [21]. As a re-

sult, we confirmed that 151 OSS (8%) were reusing insecure code

snippets; we reported cases where the insecure code snippet could

adversely affect the software to the vendors (see subsection 6.4).

This paper makes the following three contributions:

• We propose Dicos, an accurate approach for discovering

insecure code snippets in Stack Overflow posts by leveraging

user discussions in Stack Overflow.

• We extracted features that prevalent in security patches

(i.e., changes in security-sensitive APIs, control flows, and

security-related keywords), which can be used for discover-

ing insecure code snippets.

• We demonstrated the effectiveness of Dicos using 1,958,283

Stack Overflow posts; Dicos discovered 14,719 insecure code

snippets with 91% precision and 93% recall.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the background of discussions in Stack

Overflow, provide a motivating example of this paper, and then

describe an overview of Dicos.

2.1 Discussions in Stack Overflow

Developers actively discuss software development through Stack

Overflow. Figure 1 presents an example post on Stack Overflow.

The entire discussion flow can be categorized into three steps: (1)

Dicos: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions ACSAC ’21, December 6–10, 2021, Virtual Event, USA

asking a question, (2) answering the question, and (3) commenting

or voting on both the questions and answers. The details of each

step are as follows.

(1) Asking a question: The questioner posts a question to Stack
Overflow. Questions belong to various categories: a user can

ask about developing a source code that performs a specific

functionality or about addressing an error that occurs when

compiling specific software.

(2) Answering the question:Multiple users suggest answers

to the posted question (i.e., answerers). A user answers the

question in a narrative form (i.e., the “description” part in
Figure 1), or often provides an actual source code snippet

(i.e., the “code snippet” part in Figure 1).

(3) Commenting or voting: Any Stack Overflow users can

comment, vote, and score for both questions and answers.

Users tend to add comments, especially when there are issues

with answerers’ code snippets (e.g., a flaw was detected) [33].

Questions, answers, and comments can be edited at any time after

the initial registration. All questions, answers, and comments are

released publicly, including their revisions. Many developers refer

to this information in their software development, or even reuse

the source code contained in the answer post [7, 35].

2.2 Motivating example

In this paper, we focus on the problems that arise when code snip-

pets within the post are insecure. As an example, we introduce

Stack Overflow post #122721, a post on how to trim trailing spaces

from strings in C language
1
. The first answer to this question was

posted in September 2008; the post provided the “trimwhitespace”
function, which can trim leading and trailing spaces in strings in C

language (see Listing 1).

Listing 1: The original answer code snippet in post #122721.

1 char *trimwhitespace(char *str) {
2 char *end;
3 // Trim leading space
4 while(isspace(*str)) str++;
5

6 // Trim trailing space
7 end = str + strlen(str) - 1;
8 while(end > str && isspace(*end)) end--;
9

10 // Write new null terminator character
11 *(end+1) = 0;
12 return str;
13 }

However, multiple Stack Overflow users commented in the an-

swer post that the following two code parts could be insecure:

(1) “isspace()”may cause undefined behavior. If the isspace()
function (i.e., line #4 in Listing 1) receives a negative value, the

compiler changes the value to a sign-extended value. As a result,

unexpected results would be obtained.

(2) “*str” may cause a null pointer dereference. If the length

of “*str” is 0, the string “end” becomes “str-1”, with which

the value could be invalid pointer. This typically causes a crash

or exit, e.g., a race condition vulnerability.

1
https://stackoverflow.com/questions/122721

< / > < / >

OLD LAT

< / >

OLD

Figure 2: High-level overview of the workflow of Dicos.

After confirming the comments, the answerer edited the post to

fix the insecure code snippet. The changes are shown in Listing 2.

Specifically, they addressed the isspace() issue by casting char to
unsigned char (see the related documentation [16]), as shown in

lines #5 and #13 in Listing 2, and they added the exception handling

code to lines #7-8 in Listing 2 to handle the *str issue.

Listing 2: A code change history for post #122721.

1 char *trimwhitespace(char *str) {
2 char *end;
3 // Trim leading space
4 - while(isspace(*str)) str++;
5 + while(isspace((unsigned char)*str)) str++;
6

7 + if(*str == 0) // All spaces?
8 + return str;
9

10 // Trim trailing space
11 end = str + strlen(str) - 1;
12 - while(end > str && isspace(*end)) end--;
13 + while(end > str && isspace((unsigned char)*end)) end--;
14

15 // Write new null terminator character
16 - *(end+1) = 0;
17 + end[1] = ’0’;
18 return str;
19 }

If this insecure code snippet is reused in a software program, the

entire security and functionality of the software program can be

compromised. Therefore, it is important to discover insecure code

snippets in Stack Overflow posts in advance; thereafter, we can

track software containing any discovered insecure code snippets,

and recommend remediations, e.g., fixing the insecure code.

However, the existing approaches are not designed to discover

insecure code snippets with high accuracy. For instance, they cannot

discover our motivating code snippet as insecure; this is because

the code snippet does not contain any security-sensitive APIs (e.g.,
strcpy, malloc, cryptographic functions) [5, 7, 34] or vulnerable

keywords (e.g., “CoinHive”) [32]. Moreover, this code snippet is

written in the C language, and is out of the scope of several existing

approaches [5, 7, 34].

This insecure code snippet was reused in the latest versions of

three popular open-source projects. One of them is the Linux kernel,

in which this code snippet was reused with the isspace() issue;
however, they confirmed to us that they already addressed these

issues using an exception handling in a different source file. We

have forwarded this issue to the development teams for the other

two projects, and we are still waiting their responses.

https://stackoverflow.com/questions/122721

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Hyunji Hong, Seunghoon Woo, and Heejo Lee

2.3 Overview of Dicos

As explained in the motivating example, an insecure code snippet

in Stack Overflow posts can adversely affect various software pro-

grams. To resolve such problems, we propose Dicos, an approach

for discovering insecure code snippets in Stack Overflow posts.

Figure 2 illustrates the high-level workflow of Dicos.

The key idea of Dicos for discovering insecure code snippets

is leveraging user discussions in Stack Overflow. In general, an

answerer edits their code snippets when they notice that their code

has a flaw, such as a security issue [4, 24]. After editing, they leave

all edit logs in their post.

Inspired by this process, we decided to use the change history

of the post, as it provides significant hints for discovering insecure

code snippets. Specifically, Dicos comprises the following three

phases: (1) extracting the change history (i.e., diffs between the

oldest and latest revisions) from the post, (2) analyzing the diffs
using selected three features, and (3) determining whether the post

contains insecure code snippets.

Dicos first extracts the diffs from the Stack Overflow post.

Although the goal of Dicos is to discover insecure code snippets,

changelogs in descriptions and comments can also be used to dis-

cover insecure code snippets, thus focusing on all the changes to

the description, code snippets, and comments (see Figure 1). Di-

cos then discovers insecure code snippets by analyzing whether

the extracted diffs are intended to fix a security issue, based on

the selected features (the feature selection process is introduced

in section 3). If a diff is intended to patch a security issue, Dicos

determines that the oldest code snippet in the post is insecure (i.e.,
a code snippet without applying security patches). The detailed

design of Dicos is provided in section 4.

3 FEATURE SELECTION

To discover insecure code snippets, we first examined utilized fea-

tures in existing approaches and then picked only the effective

ones based on an empirical study using CVE vulnerability patches.

In particular, we examined various features that were previously

used in related approaches: Stack Overflow insecure code snippet

discovery approaches [5, 7, 32, 34] and unknown security patch

detection approaches [14, 15, 18, 25].

Initial feature selection methodology. We reviewed the fea-

tures used in the related approaches and selected a total of 12

features applicable to code snippets, descriptions, and comments;

the list of features used in the existing approaches is summarized

in Table 1. Among them, however, some features cannot be used

for discovering vulnerable snippets especially from Stack Over-

flow (e.g., number of commits); in addition, some other features are

too general to distinguish vulnerable code snippets (e.g., changes
in files, functions, and lines); thus, we excluded them. Finally, we

consider the following six features (i.e., F1 to F6).

F1. Changes in security-sensitive APIs: Checking whether

a code change has occurred in security-sensitive APIs. We

selected security-sensitive APIs by referring to related ap-

proaches [5, 7, 34] and Common Weakness Enumeration

(CWE) documents [17].

Table 1: List of the features that were used in related ap-

proaches for discovering insecure code snippets and un-

known security patches.

Idx Features

Approaches (considered features: O)

[18] [7] [32] [34] [14] [25] [5] [15]

1 Changes in a file O

2 Changes in a function O O

3 Changes in a line O

4 Changes in a conditional statement O O

5 Changes in a control flow O O O

6 Changes in a function call O

7 Changes in an operator O

8 Changes in a variable O

9 Changes in a security-related keyword O O O O

10 Changes in a security-sensitive API O O O

11 Changes in a hunk count O O

12 Number of commits O

F2. Changes in security-related keywords:Checking wheth-

er a change in the description or commit messages contains

security-related keywords. We selected the keywords by re-

ferring to existing approaches [7, 9]. In addition, we analyzed

the commit messages of 3,323 CVEs, which disclosed their

code patches via GitHub, and manually collected words that

were frequently included in the commit messages.

F3. Changes in control flows (and conditional statements):

Checking whether a control flow change exists (e.g., adding
new conditional statements). As existing approaches have

found that the control flow changes account for a large por-

tion of the security patches [14, 15, 25], we also consider this

feature in discovering insecure code snippets.

F4. Changes in literals (e.g., operator, constants): Checking
whether a change in code snippets contains literal changes

(e.g., modifying constant values).

F5. Changes in identifiers (e.g., variable): Checking whether
a change in code snippets contains AST identifier changes [31]

(e.g., changing local variables).

F6. Changes in function calls: Checking whether a change in

code snippets contains a function call change; the function

call can include security-sensitive APIs.

Large-scale empirical study using CVE vulnerabilities. To

demonstrate the efficiency of the selected features, we conducted

an empirical study using 3,323 C/C++ CVE vulnerabilities, which

provide their patch commits via GitHub (referring to [13]). We

analyzed all patches of the collected CVEs to measure the number

of appearances of each feature. Additionally, to determine whether

the selected features were prominent only in security patches, we

extracted a total of 1,000 of the latest commits with 889 general

code patches from the Linux kernel, Tensorflow, Redis, and Electron

(i.e., 250 commits from each repository), which are four of the most

popular C/C++ repositories on GitHub based on the rank of the

number of stars. We measured the appearances of the features in

security patches, and compared the results with those from the

general code patches (security-sensitive APIs and security-related

keywords selected for the empirical study are listed in Table 7 in

Appendix A and Table 9 in Appendix B, respectively). Consequently,

Table 2 presents the measurement results.

Dicos: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 2: Results of the empirical study using 3,323 CVE vul-

nerability patches and 1,000 general code commits contain-

ing 889 code patches.

Index Features
of appearances of the features

CVE patches General patches

F1 Changes in security-sensitive APIs 577 (17.36%) 38 (4.00%)

F2 Changes in security-related keywords 2,019 (60.76%) 114 (11.4%)∗

F3 Changes in control flows 2,493 (75.02%) 230 (25.87%)

F4 Changes in literals 1,454 (43.76%) 179 (20.13%)

F5 Changes in identifiers 2,170 (65.30%) 405 (45.56%)

F6 Changes in function calls (APIs) 2,791 (83.99%) 505 (56.81%)

∗ Security-related keywords were searched for in 1,000 commit messages.

First, we confirmed that F2, F3, F5, and F6 appeared frequently in

the security patches (i.e., more than 60%). However, unlike F2 and F3,
which appeared at a much higher rate in security patches (60.76%

and 75.02%, respectively) than in general code patches (11.4% and

25.87%, respectively), F5 and F6 frequently appeared in both gen-

eral and security patches. Thus, we decided to use F2 (changes in
security-related keywords) and F3 (changes in control flows) while

excluding F5 and F6 when discovering insecure code snippets.

Next, we confirmed that F1 (changes in security-sensitive APIs)

appeared at a rate four times higher in security patches than in gen-

eral code patches. Obviously, changes in security-sensitive APIs are

likely to be security patches (e.g., removing the strcpy function).
Therefore, we decided to use feature F1. Lastly, we confirmed that

F4 (changes in literals) appeared at a rate more than twice as high in

security patches as compared to general patches. However, surpris-

ingly, we discovered that F4 mainly appears with either F1 or F3;
there were only eight security patches where F4 appeared without

F1 or F3. Since we already selected F1 and F3, F4 was excluded.
Consequently, we decided to use the following three features:

F1. Changes in security-sensitive APIs;

F2. Changes in security-related keywords;

F3. Changes in control flows.

Figure 3 shows the coverage of the three selected features in

the collected CVE patches. In particular, we found that 92% of

the collected CVE patches had at least one selected feature. The

remaining CVE patches either did not have a commit message or

no specific security patch pattern was revealed (e.g., adding only a

variable declaration statement); thus, the selected features failed

to cover them. Furthermore, among the collected general patches,

only eight patches (1%) contained all three selected features; there

were 90 patches (10%) containing two features simultaneously. In

other words, we concluded that the selected features can distinguish

between security patches and general code patches with a high

degree of accuracy.

4 INSECURE CODE SNIPPET DISCOVERY

In this section, we describe how Dicos discovers insecure code

snippets. Dicos comprises the following three phases for discover-

ing insecure code snippets: (1) extracting the change history of a

post, (2) analyzing the change history using selected features, and

(3) determining whether the post contains insecure code snippets.

Figure 3: Illustration for the coverage of the three selected

features (changes in security-sensitive APIs, changes in

security-related keywords, and changes in control flows).

4.1 Extracting the change history of a post

As mentioned in subsection 2.3, Dicos discovers insecure code

snippets by leveraging user discussions in Stack Overflow: when

insecure code is detected in a particular post, the answerer takes a

series of specific actions to resolve the issue.

In subsection 2.1, we categorize a Stack Overflow post into three

parts: the question, answer, and comments. The answer part can

be further categorized into two sub-parts: description and code

snippet parts (see Figure 1). Among them, the description, code
snippets, and comments parts are mainly changed when a security

issue is detected in a code snippet.We summarize the characteristics

of the changes for each part as follows.

(1) Comments - reporting security issues: If the code snippet in
the answer post has security issues (e.g., vulnerability), Stack
Overflow users can notify the issues through comments, or even

provide “suggested edit”.

(2) Code snippet - fixing the security issues: When a security

issue is found in the code snippet, the answerer modifies the

insecure code snippet into a safe one.

(3) Description - introducing the changes: If answerers edit

their posts, they often leave the related messages (e.g., the rea-
son for editing their post) in the description part.

Dicos first collects Stack Overflow posts, and then extracts all

the change histories of each post. Because the Stack Overflow post

dataset contains every revision of each post [2], this task can easily

be conducted. Dicos then selects the oldest and the latest revision

of the post, and then extracts the differences (i.e., diffs) between
the two revisions. Although a post may have been changed multi-

ple times, we focus on the difference between the oldest and the

latest version of a particular post, because we assume that changes

between the oldest and latest revisions include all change patterns

that exist between them. The diffs for comments and descriptions

are extracted in the form of string differences.

Technical challenge: code snippet pairing problem. Here,

one technical challenge arises: the code snippet pairing problem. In

general, a post contains multiple code snippets, and a code snippet

can contain several functions that perform specific functionalities.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Hyunji Hong, Seunghoon Woo, and Heejo Lee

CS1

CS2

CS3

* CS = Code Snippet

Code snippets
of a post

CS1

CS2

CS3

function1

the rest of CS1

function2

the rest of CS2

CS3

Generating new code snippets
by extracting functions

OLDEST Max Sim.

Pairing based on similarity score

function1

the rest of CS1

function2

the rest of CS2

CS3

LATEST

function2’

the rest of CS1

function1’

the rest of CS2

CS3

Figure 4: Overall flow of the code snippet pairing.

In the process of updating the post, a code snippet can be added or

deleted, the order of code snippets can be changed, and only some

of the contained functions can move to another code snippet. In

this situation, the simple diffing method can extract the erroneous

change history from a completely different code snippet pair.

To overcome this challenge, we present a novel code snippet

pairing technique. The key idea is extracting functions contained

in code snippets by cleaving them, and measuring similarity scores

between all code snippets in the oldest and latest revisions. The

overview of the pairing process is depicted in Figure 4.

Function extraction from code snippets. From every code

snippet in the post, Dicos extracts all functions contained in the

code snippet. In other words, Dicos splits the code snippet into

finer functional units for the more attentive discovery of insecure

code snippets. LetCS be a code snippet in a post; this can represent

an extracted function. Dicos applies this step for the oldest and

latest revision of the post, respectively.

Code snippet pairing. In the code snippet pairing process, Di-

cos first picks one CS from the oldest revision, then measures the

similarity score to everyCS in the latest revision. To do this, Dicos

first splits each CS into a set of code lines (i.e., splits with a new-

line character), removes spaces from each code line, and converts

all the characters in each code line to lower cases (i.e., applying
normalization) for ignoring formatting-related changes that do not

affect the semantic of the codes [11, 27, 30].

Let the normalized CS (i.e., set of normalized code lines) of the

oldest revision is CSo and that of the latest revision is CSl . Dicos
then measures the similarity score (let Φ) between CSo and CSl
by leveraging the Jaccard index [26]

(
i .e .,Φ = |CSo ∩CSl |

|CSo ∪CSl |
)
. If Φ is

greater than the pre-defined threshold θ value, Dicos determines

thatCSo andCSl as a code snippet pair ; here, θ is selected as a small

value by considering code changes (e.g., less than 0.5).

After finding all code snippet pairs between the oldest and latest

revisions, Dicos extracts the diffs between the paired code snip-

pets by utilizing the known diffing command, such as git diff.
The diffs for the code snippets are extracted in the form of code

patches. Here, if a CSo has a similarity value less than θ with all

CSl , we consider that the function has undergone a major change

or has been deleted during post updates. To cover this case, Di-

cos searches older revisions from the latest revision in the reverse

direction and processes the same approach, recursively. If Dicos

does not find any code snippets with a similarity greater than θ to

CSo , even after traversing all revisions of the post, Dicos considers

that CSo was deleted during post updates, and the change history

is obtained in which the entire code lines in CSo was deleted.

4.2 Analyzing the extracted change history

In this part, we introduce how Dicos analyzes the change history.

Technical challenge: applying features to Stack Overflow.
Here comes a technical challenge, which is to devise an efficient

way to apply features extracted from known security patches to

insecure code snippet discovery from Stack Overflow. We introduce

the process of discovering insecure code snippets by applying the

three features extracted in section 3 to each element (i.e., description,
comments, and code snippets) of a Stack Overflow post.

Analyzing descriptions and comments. When confirming

that the diffs of descriptions and comments are related to a secu-

rity patch, we can check whether security-related keywords (F2) are
included in the diffs. However, this simple method can yield many

false positives. For example, “fix” is one of the most frequently used

keywords in security patches, but it can also be used to explain a

non-security change (e.g., one of the commit messages from Redis
2

is “Fix typos in comments and improve readability”).

Instead, we classified the selected keywords into three categories:

nouns, verbs, and modifiers. Thereafter, Dicos checks if a security-

related keyword pair is included within each sentence of the diffs
in post description or comments; here, a security-related keywords

pair is defined either (noun, verb) or (modifier, verb). In other words,

we determine that the keyword is matched only when the specific

target and the behavior of the target are both related to security.

Checking the existence of a security-related keyword pair is

conducted using a simple string inclusion operation. To prevent

matching failures caused by the difference between uppercase and

lowercase, Dicos replaces all characters in descriptions, comments,

and keywords to lowercasewhen performing stringmatching opera-

tions (the selected security-related keywords and their classification

are listed in Table 9 in Appendix B).

One consideration is that if the purpose of a specific post is to re-

solve a security issue, the description may contain security-related

keywords from the time the post was created, even though the

contained code snippet was safe. Therefore, Dicos only considers

cases where a security-related keyword pair is included only in

diffs: that is, if a security-related keyword pair exists in the post

description when the post originated, Dicos determines that this

post does not contain the security patch pattern. As a representative

example, we introduce post #44184152
3
(i.e., "How to avoid if/else

if chain when classifying a heading into 8 directions?").

Listing 3: Patch for the insecure code snippet in post #44184152.

1 Dir GetDirForAngle(int angle)
2 {
3 const Dir slices[] = { RIGHT, UP_RIGHT, UP, UP, UP_LEFT,

LEFT, LEFT, DOWN_LEFT, DOWN, DOWN, DOWN_RIGHT, RIGHT };
4 - return slices[(angle % 360) / 30];
5 + return slices[(((angle % 360) + 360) % 360) / 30];
6 }

Listing 4: Added comments and descriptions in post #44184152.

• User’s comment: ...this wouldn't work for negative inputs because
angle % 360 returns a negative value when angle is negative.

• Answerer’s decription: Fixed math to handle negative angles...

2
https://github.com/redis/redis

3
https://stackoverflow.com/questions/44183771

https://github.com/redis/redis
https://stackoverflow.com/questions/44183771

Dicos: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions ACSAC ’21, December 6–10, 2021, Virtual Event, USA

The original code snippet in the answer post was insecure because

the “angle % 360” could be negative (see Listing 3). The code snippet
was modified by a user’s comment, and the answerer included

details about the change in the description part (see Listing 4).

Dicos can identify that this is a security-related change by checking

whether a security-related keyword is included in the diffs of

descriptions: the verb “fix” and the modifier “negative” are included

in one sentence of the added description.

Analyzing code snippets. Dicos uses F1 and F3 (i.e., changes in
security-sensitive APIs and control flows) to analyze code snippets

in Stack Overflow posts; the selected APIs are listed in Table 7 (for

C/C++ posts) and Table 8 (for Android posts) in Appendix A.

To analyze changes in security-sensitive APIs (F1), Dicos con-
siders the diff of code snippet that extracted in subsection 4.1,

especially the deleted source code lines. If any delete code lines

contain a security-sensitive API, Dicos determines that the change

history of the post contains a security patch. As an example, we

introduce post #700018
4
(i.e., “Display the binary representation of

a number in C?”) where F1 was detected.

Listing 5: A patch snippet contained in post #700018.

1 static char *binrep (unsigned int val, char *buff, int sz) {
2 + char *pbuff = buff;
3 ..
4 /* Special case for zero to ensure some output. */
5 if (val == 0) {
6 - strcpy(buff, "0");
7 + char *pbuff = buff;
8 + *pbuff++ = ‘0’;
9 + *pbuff = ‘\0’;
10 return buff;
11 ..}

The patch shown in Listing 5 was applied to prevent a possible

buffer overflow; as the strcpy function has been deleted in line #6,

Dicos can identify that the change is related to security.

Next, to analyze changes in control flows (F3),Dicos first extracts
control flows and all conditional statements from both the paired

code snippets (e.g., we can use the robust parser Joern [31] to extract
these pieces of information). Dicos then checks whether the diffs
of the code snippet contains a change in control flows or conditional

statements. Specifically, Dicos considers both (1) a change in the

direction of control flows (e.g., adding if statement) and (2) a change

in the conditions of each conditional statement even though the

direction of control flows remains unchanged (e.g., changing a

condition in an if statement). For example, we introduce post

#744822 (i.e., “How to compare ends of strings in C?”) where F3 was
detected

5
.

Listing 6: A patch snippet contained in post #744822.

1 int EndsWith (const char *str, const char *suffix) {
2 + if (!str || !suffix)
3 + return 0;
4 size_t lenstr = strlen(str);
5 size_t lensuffix = strlen(suffix);
6 ..}

By applying this patch (Listing 6), the answerer tried to prevent

possible errors by adding a null check for the str and suffix

4
https://stackoverflow.com/questions/700018

5
https://stackoverflow.com/questions/744822

variables. Dicos can determined that this change is a security patch

as the control flow was obviously changed.

4.3 Determining insecure code snippets

Dicos discovers insecure code snippets based on the analysis results

using the selected features (F1, F2 and F3) in subsection 4.2. For

more accurate detection, Dicos defines insecure posts as posts in
which two or more features appear simultaneously. This is because,

we confirmed that the post in which only one feature appeared,

especially for F1 and F3, is more likely to be modified to simply

change the functionalities, rather than resolving a security issue.

Finally, Dicos determines that the code snippet contained in the

discovered insecure posts is an insecure code snippet.
Unlike existing approaches, Dicos does not depend on a single

feature but uses a combination of effective features and does not

consider only specific security issues but can cover various security

issues by using multiple security-related keywords and security-

sensitive APIs along with considering a change in the control flows.

Furthermore, the design of Dicos is applicable to any programming

language, and all processes of Dicos can be conducted in an au-

tomated manner. Consequently, Dicos can discover insecure code

snippets with high accuracy compared to existing approaches (see

subsection 5.3).

5 EVALUATION

In this section, we evaluate Dicos. subsection 5.1 introduces the

collected dataset and the implementation of Dicos. subsection 5.2

investigates how accurately Dicos can discover insecure code snip-

pets in practice.We then compareDicoswith existing approaches [7,

23] in subsection 5.3, thereby demonstrating the effectiveness of

Dicos. subsection 5.4 examines the effectiveness of the techniques

utilized in Dicos, and subsection 5.5 measures the performance of

Dicos. We evaluated Dicos on a machine with Ubuntu 18.04.4 LTS,

an Intel i5-6600 CPU @ 3.30GHz, 24GB RAM, and a 1TB SSD.

5.1 Dataset and implementation

We first introduce the dataset collection methodology and the im-

plementation of Dicos.

Dataset. We preferentially evaluate Dicos using the C, C++,

and Android related posts, since the reuse of small pieces of code

is prevalent in the software [7, 11, 27, 28]. It should be noted that

the design of Dicos can be applied to any programming language.

We used the SOTorrent dataset [2] which is available at Google

BigQuery [19], as the SOTorrent dataset provides well-constructed
Stack Overflow posts. We utilized the latest released version, i.e.,
“2020-12-31” (4.4GB). We then extracted all Stack Overflow answer

posts tagged with C, C++, and Android, which contain at least

one code snippet, and extracted a total of 1,958,283 Stack Overflow

answer posts (i.e., 987,367 C/C++ and 970,916 Android posts). As

Dicos focuses on the change history of each post, every post should

contain at least one change history. Among all the posts collected,

668,520 (34%) satisfied this condition.

As a result, our dataset for the evaluation consisted of 668,520

posts, which contained an accumulation of 1,514,547 code snippets

(i.e., averaged two or three code snippets per a post).

https://stackoverflow.com/questions/700018
https://stackoverflow.com/questions/744822

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Hyunji Hong, Seunghoon Woo, and Heejo Lee

Implementation. Dicos comprises the following two modules:

a post collector and a post analyzer. The post collector collects Stack
Overflow posts and extracts the change history in descriptions,

comments, and code snippets for each post. In the code snippet

pairing process, we set the θ value as 0.3 (see subsection 4.1).

The post analyzer analyzes the collected posts based on the

selected features in section 3, and then discovers insecure code

snippets. When analyzing the code snippets provided in the form of

a C/C++ function, Dicos utilizes Ctags [6] and a Joern parser [31].

In particular, Dicos first extracts a function from the code snippets

with Ctags, and then generates a code property graph of the ex-

tracted function using the Joern parser, fromwhich it can obtain the

control flows and contained conditional statements of the function.

For the code snippets provided in the form of a set of code lines,

Dicos identifies control flows and conditional statements based on

regular expressions, because Ctags and the Joern parser can only

be applied to a function unit. Unlike Ctags, which are applicable

to all languages, the Joern parser can only be applied in C/C++

languages. Therefore, we utilized the combination of Ctags and

regular expressions for analyzing Android code snippets.

Dicos is implemented on approximately 800 lines of Python code

excluding for the external libraries. The source code of Dicos is

available at https://github.com/hyunji-hong/DICOS-public.

5.2 Discovery accuracy of Dicos

To evaluate accuracy, we analyzed the insecure code snippet dis-

covery results of Dicos on real-world Stack Overflow posts.

Methodology. We applied Dicos to our dataset of 668,520 Stack

Overflow posts, and measured the accuracy of Dicos. Specifically,

we verified whether the insecure posts discovered byDicos actually

contain insecure code snippets, and whether the posts that were de-

termined as secure by Dicos do not contain insecure code snippets.

To evaluate the accuracy of Dicos, we used the following seven

metrics: true positives (TP), false positives (FP), true negatives (TN),

false negatives (FN), precision

(
#TP

#TP + #FP

)
, recall

(
#TP

#TP + #FN

)
, and

accuracy

(
#TP + #TN

#TP + #FP + #TN + #FN

)
.

Accuracy measurement. In our experiments, Dicos discov-

ered 12,458 insecure posts (a total of 14,719 insecure code snip-

pets) out of 668,520 collected posts; 8,941 insecure posts tagged

with C/C++, and the remaining 3,517 insecure posts tagged with

Android.

Among the 12,458 insecure posts, we observed that 788 inse-

cure posts contained all three selected features (F1, F2, and F3, see
section 3), and the remaining 11,670 insecure posts contained two

of the selected features. In fact, it is very challenging to verify all

discovery results manually. Instead, we initially selected the top

posts with the highest number of votes and measured the accuracy

of Dicos by analyzing the selected posts. This is because we deter-

mined that they had a greater impact on the software development;

such posts may obtain more users’ attention and are more likely to

spread to other software. In addition, we analyzed a group consists

of randomly selected insecure code snippets discovered by Dicos

to avoid giving a biased result in the number of votes. Finally, the

five groups selected for accuracy measurement are as follows.

Table 3: Accuracy measurement result of Dicos for C/C++

posts.

ID #Posts #TP #FP #TN #FN

G1 731 704 27 n/a n/a

G2 200 171 29 n/a n/a

G3 100 82 18 n/a n/a

G4 200 n/a n/a 151 49

G5 100 n/a n/a 92 8

Total 1,331 957 74 243 57

Precision 0.93

Recall 0.94

Accuracy 0.90

Table 4: Accuracymeasurement result of Dicos for Android

posts.

ID #Posts #TP #FP #TN #FN

G1 57 53 4 n/a n/a

G2 200 175 25 n/a n/a

G3 100 80 20 n/a n/a

G4 200 n/a n/a 167 33

G5 100 n/a n/a 93 7

Total 657 308 49 260 40

Precision 0.86

Recall 0.89

Accuracy 0.86

G1. All posts with three selected features

G2. Top 200 posts with two selected features

G3. Randomly selected 100 posts with two features

G4. Top 200 posts with only one feature

G5. Top 100 posts without features

Note that G1, G2, and G3 are insecure posts discovered by Dicos

(i.e., for measuring TP and FP); G4 and G5 are posts that Dicos

determined to be safe (i.e., for measuring TN and FN). We man-

ually verified the discovery results; the manual verification was

performed by two researchers with the ability to determine whether

a code snippet is insecure by reviewing the post and its change

history, which took ten days. The accuracy measurement results

are presented in Table 3 (for C/C++), Table 4 (for Android), and

Table 5 (for both languages).

We confirmed that Dicos showed 91% precision, 93% recall,

and 89% accuracy for insecure posts discovery (see Table 5); in par-

ticular, Dicos showed 93% precision, 94% recall, and 90% accuracy

for C/C++ insecure posts discovery (see Table 3), and 86% precision,

89% recall, and 86% accuracy for Android insecure posts discovery

(see Table 4). The accuracy measurement results of C/C++ and An-

droid showed comparable patterns in the groups from G2 to G5, but

there was a big difference in the verification results for G1. Note

that changes of security-sensitive APIs predominantly appeared in

Android posts while control flow changes hardly occurred. Conse-

quently, the number of posts contained in G1 was small in Android

cases, and most of the posts belonging to G1 are TPs (i.e., insecure),

https://github.com/hyunji-hong/DICOS-public

Dicos: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 5: Integrated accuracy measurement results for C,

C++, and Android posts.

ID #Total Posts #TP #FP #TN #FN

G1 788 757 31 n/a n/a

G2 400 346 54 n/a n/a

G3 200 162 38 n/a n/a

G4 400 n/a n/a 318 82

G5 200 n/a n/a 185 15

Total 1,988 1,265 123 503 97

Precision 0.91

Recall 0.93

Accuracy 0.89

thus C/C++ cases showed slightly better accuracy than Android

cases.

Although Dicos precisely discovered insecure posts in most

cases, it reported several false results. We found that the main

reasons for FPs are variable name changes in the conditional state-

ments, and comments that incorrectly reported that a code snippet

was insecure (e.g., the comment of post #2736841
6
contained the

following message: “you have a memory leak ... my apologies, I

am mistaken.”). The cause of FNs is when a security patch pattern

other than the selected features is discovered in the code snippet

(e.g., a type-casting-related vulnerability), without mentioning any

security-related keywords. In addition, when the security issue was

resolved by changing only the data flows, Dicos produced false

negatives. Strict feature selection to reduce FPs will increase FNs,

and selecting more features to reduce FNs will cause more FPs.

We believe that the features used by Dicos work effectively and

maintains a good balance in terms of precision and recall.

5.3 Comparison with the existing approach

In this part, we compared the insecure code snippet discovery re-

sults of Dicos with those of existing approaches [7, 23], to demon-

strate the effectiveness of Dicos.

Tool selection. We reviewed several approaches that discovered

insecure code snippets from Stack Overflow [5, 7, 8, 23, 32, 34]. For

the in-depth comparison, we should be able to use their tools or

experimental results. Thus, we excluded existing approaches that

do not publicly provide tools or experimental results [5, 32, 34]

(despite our requests). Finally, we decided to compare the discovery

results of Dicos to that of the following approaches: Fischer et al. [7]
(Tand), which attempted to discover Android insecure posts, and

Verdi et al. [23] (Tcpp), which attempted to discover C++ insecure

posts from Stack Overflow.

Methodology. We first examine the total number of insecure

posts discovered by each approach (i.e., Dicos, Tand , and Tcpp).
Then, we investigate the coverage of Dicos to their discovery re-

sults (i.e., the number of commonly discovered insecure posts); here

we only consider the posts to which the methodology of Dicos

6
https://stackoverflow.com/questions/2736841

Table 6: Comparison results of insecure posts discovery of

Dicos, Tand [7], and Tcpp [23].

Category

Android posts

(up to Mar. 2016)

C/C++ posts

(up to Sep. 2018)

Dicos Tand [7] Dicos Tcpp [23]

#Discovered insecure posts
2,454 278 7,241 69

#Discovered insecure posts (containing change history)
2,454 62 7,241 36

#Commonly discovered insecure posts
50 22

Coverage of the other tool’s results (containing change history)
0.81

(50/62)

0.02

(50/2,454)

0.61

(22/36)

0.003

(22/7,241)

can be applied (i.e., the posts should contain at least one change

history). The experimental results are presented in Table 6.

Comparison results (Android). Tand [7] examined 1,165,350

Android answer posts in Stack Overflow (datasets up to March

2016), and then discovered 420 insecure code snippets from 278

unique posts of which 62 posts containing change history. When

we applied Dicos to the same dataset, Dicos discovered 2,454

insecure posts, which is 9 times more than reported by Tand .
Among the 62 insecure posts containing change history discov-

ered byTand , Dicos discovered 50 out of 62 posts (81%) as insecure;
it is worth noting thatTand covered only 2% of the Dicos discovery

results. The 12 posts thatDicos did not discover are either the latest

revision of the post remains in a vulnerable state (i.e., there is no
security patch in the change history) or only one feature is detected

(i.e., security-sensitive APIs) in the post.

Because Tand only utilizes security-sensitive APIs while Dicos

additionally considers security-related keywords and control flow

changes along with the security-sensitive APIs, there was a con-

siderable difference in the number of discovered insecure posts.

The comparison results affirmed that the approach of Dicos, which

considers the combination of three effective features, could discover

more insecure posts in a wider range than the existing approach

considering only security-sensitive APIs.

Comparison results (C/C++). Tcpp [23] reviewed 72,483 C++

code snippets in Stack Overflow (datasets up to September 2018),

and then discovered 99 insecure code snippets from 69 unique

posts of which 36 posts containing change history. We confirmed

that Dicos discovered 7,241 insecure posts in the same dataset,

which is 105 times more than discovered by Tcpp .
When Tcpp attempted to discover insecure code snippets, they

manually analyzed code snippets based on the selected CWE types,

such as CWE-476 (i.e., null pointer dereference). Because their ap-
proach relied on manual analysis and considered only a few CWE

types, they failed to discover many insecure code snippets that are

actually prevalent on Stack Overflow.

In contrast, Dicos showed substantially better discovery cover-

age than the existing approach. Among the 36 posts with change

history discovered byTcpp , we confirmed thatDicos could discover

22 of them (61%) as insecure posts. The 14 posts that Dicos failed to

https://stackoverflow.com/questions/2736841

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Hyunji Hong, Seunghoon Woo, and Heejo Lee

discover did not show a specific pattern that could be determined

as insecure posts, similar to the cause of FNs of Dicos, as men-

tioned in subsection 5.2. The results demonstrated that Dicos, an

effective feature-based insecure code snippet discovery approach,

can discover insecure code snippets more widely and accurately

than the existing approach.

5.4 Effectiveness of the utilized techniques

In subsection 4.1, we introduced the code snippet pairing technique

utilized in Dicos, which pairs the most similar two code snippets

between two post revisions.

To demonstrate its effectiveness, we compared the result of our

proposed pairing technique with the result of simple pairing tech-

nique based on the code snippet number; notably, sequential num-

bers were assigned to all code snippets in each post of the collected

dataset. Hence, we assume that the simple pairing technique pairs

the code snippets with the same number between two post revi-

sions. We randomly selected 2,000 C/C++ insecure posts, and then

measured the similarity scores using the Jaccard index [26] between

code snippet pairs detected by each technique, respectively. The

results are illustrated in Figure 5.

Figure 5: Similarity scores measured by (1) our proposed

code snippet pairing method and (2) simple method based

on the assigned sequential numbers of code snippets.

It is worth noting that the similarity scores detected by our pro-

posed pairing technique showed a much higher similarity score

than that of the simple sequential number-based pairing technique.

For 222 posts, both techniques provided the same similarity score.

However, for the remaining 1,778 posts, our pairing technique

provided greater similarity scores than that of the simple pairing

technique. This suggests that, even though there are more similar

code snippet pairs, pairings can be made between completely dif-

ferent code snippets if they are simply paired based on a sequential

number. In conclusion, our pairing method, which pairs the two

code snippets with the highest similarity, is effective in the situation

that the order and number of code snippets are frequently changed

during the post update process.

5.5 Performance of Dicos

In our setup, it took a total of 20 hours to download the Google

BigQuery dataset, select posts with change history, and extract

the oldest and latest revision of each post. In addition, it took a

total of ten days to discover insecure posts; this includes the time

needed to extract the change history from a post, check whether the

three selected features are contained in the change history of the

collected 668,520 posts, and determine whether a post is insecure.

On average, Dicos took approximately 1.4 s to determine whether

a post contains an insecure code snippet, which is sufficient to

discover insecure code snippets using a large-scale dataset.

6 FINDINGS

From our experiments, we confirmed Dicos discovered 14,719 inse-

cure code snippets from 12,458 posts. In this section, we provide

the analysis results related to the following four questions:

Q1. Are older posts more likely to provide insecure code snippets?
(subsection 6.1)

Q2. Are accepted answer posts more secure than non-accepted

posts? (subsection 6.2)

Q3. What types of insecure code snippets were discovered? (sub-
section 6.3)

Q4. What is the status of reusing insecure code snippets in popular

open-source software? (subsection 6.4)

6.1 Creation time of a post and vulnerabilities

To answer the first question, we analyzed the correlation between

the post creation time and the security of the post. In particular, we

examined the year distribution of secure and insecure posts from

2008 to 2020. The results are depicted in Figure 6.

Figure 6: Year distributions of secure and insecure posts dis-

covered by Dicos (logarithmic scale).

Interestingly, we confirmed that the proportion of insecure posts

accounted for approximately 2% each year regardless of how old or

new the post is. In other words, our experimental results implies

that there is no clear correlation between post creation time and

security. Incidentally, the fact that insecure posts are constantly

being uploaded to Stack Overflow suggests the need for an auto-

mated approach that can accurately discover insecure posts on

Stack Overflow, such as Dicos.

6.2 Acceptance of a post and security

In general, users are more likely to think that accepted answers

are more reliable (e.g., secure) than non-accepted answers [29].

To answer such a common thought, we investigated the relations

between the acceptance of an answer post and its security. Figure 7

illustrates the results.

From the results, we confirmed that the ratio of insecure posts

was almost the same between accepted (1.67%) and non-accepted

(1.99%) posts. This, presumably, occurred because the security of

Dicos: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Figure 7: Ratio of insecure posts between accepted and non-

accepted posts discovered by Dicos (logarithmic scale).

the code snippet did not need to be considered in the process of

accepting an answer post by the questioner. The results affirmed

that developers need to verify a code snippet even from an accepted

post whether it contains a insecure code snippet; Dicos can help

this verification process.

6.3 Types of insecure code snippets

For 788 insecure posts with all three selected features, we manually

examined the types of insecure code snippets (i.e., 880 code snip-
pets). This task was mainly conducted on the discovered security-

related keywords, and additionally, we referred to user comments,

descriptions of the answerer, and the code change history. Figure 8

illustrates the examined results.

Figure 8: Types of discovered insecure code snippets.

Themost prevalent type of insecure code snippetswas undefined
behavior, accounting for 42% of the total; the representative exam-

ple was introduced in subsection 2.2. Perhaps, given the nature of

Stack Overflow to answer specific questions, answerers focus more

on the functional aspects of their code snippets, not consider all

possible exceptions. For this reason, we determined that undefined

behavior accounted for the highest proportion. In addition, various

types of insecure code snippets existed, such as null-terminated

string issues, memory leaks and buffer overflows. This result sug-

gests the following fact: unlike previous approaches that could only

discover specific types of insecure code snippets, Dicos can dis-

cover various types of insecure code snippets with the help of three

effective features.

6.4 Reusing insecure code snippets in the wild

Finally, to answer the last question (Q4), we investigated how wide-

spread the insecure code snippets discovered by Dicos are in real-

world popular open-source software (OSS) projects.

Methodology. As the searching target pool, we collected the

latest versions of 2,000 popular C/C++ OSS projects from GitHub

(ranked by the number of stars), including OS (e.g., Linux), databases
(e.g., Redis), and media (e.g., FFmpeg) related projects in May 2021.

We decided to leverage the existing large-gap code clone detection

technique (i.e., SourcererCC [21]); this is because we decided that a

large-gap code clone detector would be effective as many parts of

the insecure code snippets (e.g., variable names) could be changed

during the code reuse process. However, as SourcererCC is a code

clone detection technique, not for the vulnerable code clones, it can

report several false results [11]. Therefore, we manually analyzed

the primary detection results and only considered the case where

the insecure code snippet is actually propagated to popular OSS

projects. We applied the same experimental setting for SourcererCC

that used in their paper (i.e., the θ is selected as 0.8).

Detection result. Consequently, we confirmed that 27 insecure

code snippets, discovered by Dicos, were reused in the latest ver-

sions of 151 popularOSS projects (8%). Of these, themost notable

example related to insecure code snippet reuse is the Linux kernel

case, which is introduced in subsection 2.2. For the cases of discov-

ered dangerous code snippets that can affect the security of the

entire software, we have reported to the corresponding vendors
7
.

Our experimental results indicate that: (1) code snippets are actually

reused in various OSS projects, and (2) a considerable number of

insecure code snippets are included in the latest version of popular

OSS projects. Reusing insecure code snippets can open up an attack

vector in the affected software. As the first step in the prevention of

such undesirable situations, we can apply Dicos for more attentive

insecure code snippet detection.

7 RELATEDWORKS

In this section, we introduce a number of related works.

Discovering insecure code snippets. Fischer et al. [7] provided
a security analysis for security-related Android code snippets. They

manually checked whether the code snippet was insecure, and

demonstrated the impact of the use of insecure code snippets in real-

world Android applications. Yanfang et al. [32] proposed ICSD, a

tool for detecting insecure posts based on the utilized APIs, methods,

and social coding properties of each post. Zhang et al. [34] analyzed
potential API usage violations in the code snippets. Chen et al. [5]
labeled Android code snippets as secure or insecure, and analyzed

their distributions, such as their view counts or the number of

duplicates. Finally, Verdi et al. [23] detected C++ insecure code

snippets in Stack Overflow based on manual inspection.

However, existing approaches are not efficient in discovering

insecure code snippets in terms of discovery coverage. They cannot

discover insecure code snippets other than Java or Android (i.e.,
language-restricted) and that are not related to security-sensitive

APIs (i.e., feature-restricted). In addition, because they do not con-

sider the semantics of the code, their results have many FPs and FNs

(i.e., low accuracy) [30]. Furthermore, unless insecure code snippets

are discovered in an automated manner, an approach is not suitable

for checking for Stack Overflow posts that are constantly being

added.

7
Since we have not received confirmation from most vendors, we omit the detailed

OSS list with insecure code snippets.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Hyunji Hong, Seunghoon Woo, and Heejo Lee

Detecting unknown security patches. Perl et al. [18] pro-

posed VCCFinder to identify potentially vulnerable commits using

coarse-grained feature set. Their features focus on changes from

commits or repository metadata rather than changes in the source

code. Wang et al. [25] identified unknown security patches from

code commits with the finer-grained feature set (e.g., considering
61 features). Machiry et al. [15] proposed SPIDER to analyze safe

patches by considering control flow changes. Kangjie et al. [14]
proposed CRIX to detect missing-check bugs in kernels. However,

these approaches may yield false alarms owing to the ineffective fea-

ture selection. This is because, they consider only the fragmentary

characteristics of the security patch (e.g., control flow changes [15]),

are focused more on external characteristics rather than the code

itself [18], select too general and excessive features that are also

prevalent in general code patches [25], and are applicable only in

limited environment settings [14].

8 DISCUSSION

In this section, we discuss several considerations related to Dicos.

The number of used features. Part of the conclusion is that

considering multiple features is more accurate than considering a

single feature in discovering insecure code snippets. The G4 group

in subsection 5.2 is composed of 200 posts containing only one of

each feature. When Dicos used a single feature to discover an inse-

cure post, the precision was as follows: 25% for F1, 27% for F2, and
27% for F3. By contrast, when Dicos considered multiple features

to discover an insecure post, the precision was much higher than

when using a single feature (e.g., 96% for three features, see Table 5).

A single feature-based approach not only fails to discover insecure

code snippets where patch patterns other than the selected features

occur but can also lead to a misinterpretation of a secure code snip-

pet as being insecure. Conversely, the approach of selecting too

many features and determining whether the selected many features

appear simultaneously in a code snippet yields a false negative.

Therefore, we determined that the approach of Dicos maintains a

good balance in terms of discovery precision and recall.

Practical usage: porting to Stack Overflow. Currently, Stack

Overflow does not provide any notification or information about

insecure code snippets. In this situation, the information in the inse-

cure code snippet discovered by Dicos can be used in the following

two ways. First, whenever a change occurs after a post is uploaded

to Stack Overflow, the Dicos can be used to verify that the change

is intended to resolve a security issue; if the change is a security

patch, Stack Overflow can add a mark to the post such as a security

warning. Next, among registered posts, Stack Overflow can provide

the related information on insecure posts (e.g., patch information),

discovered by Dicos, in the form of a database. By providing the

insecure post information as such ways, Stack Overflow can pro-

vide more secure code snippets and increase credibility, and users

can avoid reusing insecure code snippets in their software.

Limitations and future work. First, although Dicos showed

a wider discovery coverage than previous approaches by utilizing

a combination of effective features, it is still difficult to discover

insecure code snippets that appear with patterns other than the

selected features. Second, some of the insecure code snippets we

found on Stack Overflow and real world OSS projects could be

triggered, but not all. We are attempting to trigger the discovered

insecure codes by referring to related approaches (e.g., [12]) and
websites (e.g., [22]), and will contribute to the security of the OSS

ecosystem by reporting threatening insecure codes that can be trig-

gered. Finally, our approach can be applicable to other online Q&A

fora such as Quora and MSDN forum. Since Dicos discovers inse-

cure posts by analyzing the post change history, it can be applied to

other Q&A fora that provide post change history; for example, as

Quora provides the change history via Post log, and thus, Dicos

can be applied to discover insecure posts within Quora.

9 CONCLUSION

Reusing code snippets from online Q&A fora such as Stack Over-

flow can cause security problems when developers reuse the code

snippets without fully understanding the code implications. In re-

sponse, we presented Dicos, which is an accurate approach by

examining the change history of Stack Overflow posts for discov-

ering insecure code snippets. We confirmed that Dicos success-

fully discovered 14,719 insecure code snippets from 1,958,283 Stack

Overflow posts with 91% precision and 93% recall. Equipped with

insecure code snippet discovery results from Dicos, the credibil-

ity of Stack Overflow can be improved by addressing discovered

insecure code snippets, and further, this can create a safe code snip-

pet reuse environment. The source code of Dicos is available at

https://github.com/hyunji-hong/DICOS-public.

ACKNOWLEDGMENTS

We appreciate the anonymous reviewers and our shepherd for their

valuable comments to improve the quality of the paper. We also

thank you for the dedicated help of program chairs. This work was

supported by Institute of Information & Communications Tech-

nology Planning & Evaluation (IITP) grant funded by the Korea

government (MSIT) (No.2019-0-01697 Development of Automated

Vulnerability Discovery Technologies for Blockchain Platform Se-

curity, No.2019-0-01343 Regional Strategic Industry Convergence

Security Core Talent Training Business, and No.IITP-2021-2020-0-

01819 ICT Creative Consilience program).

REFERENCES

[1] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,

and Christian Stransky. 2016. You Get Where You’re Looking for: The Impact of

Information Sources on Code Security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289–305.

[2] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.

SOTorrent: Reconstructing and Analyzing the Evolution of Stack Overflow Posts.

In Proceedings of the 15th international conference on mining software repositories.
319–330.

[3] BetterProgramming. 2020. Why Code Snippets From Stack Overflow Can Break

Your Project. https://betterprogramming.pub/why-code-snippets-from-stack-

overflow-can-break-your-project-ced579a48ddb

[4] Aaditya Bhatia, Shaowei Wang, Muhammad Asaduzzaman, and Ahmed E Hassan.

2020. A Study of Bug Management Using the Stack Exchange Question and

Answering Platform. IEEE Transactions on Software Engineering (2020).

[5] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens Grossklags. 2019.

How Reliable is the Crowdsourced Knowledge of Security Implementation?. In

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
536–547.

[6] Ctags 2021. Universal Ctags. Ctags. https://github.com/universal-ctags/.

[7] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin

Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harm-

ful? The Impact of Copy&Paste on Android Application Security. In 2017 IEEE

https://github.com/hyunji-hong/DICOS-public
https://betterprogramming.pub/why-code-snippets-from-stack-overflow-can-break-your-project-ced579a48ddb
https://betterprogramming.pub/why-code-snippets-from-stack-overflow-can-break-your-project-ced579a48ddb
https://github.com/universal-ctags/

Dicos: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Symposium on Security and Privacy (SP). IEEE, 121–136.
[8] Felix Fischer, Huang Xiao, Ching-Yu Kao, Yannick Stachelscheid, Benjamin John-

son, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin Böttinger, Paul

Muntean, and Jens Grossklags. 2019. Stack Overflow Considered Helpful! Deep

Learning Security Nudges Towards Stronger Cryptography. In 2019 28th USENIX
Security Symposium (Security). 339–356.

[9] Md Rakibul Islam and Minhaz F Zibran. 2021. What changes in where?: an

empirical study of bug-fixing change patterns. ACM SIGAPP Applied Computing
Review 20, 4 (2021), 18–34.

[10] Seulbae Kim and Heejo Lee. 2018. Software Systems at risk: An empirical study

of cloned vulnerabilities in practice. Computers & Security 77 (2018), 720–736.

[11] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A

Scalable Approach for Vulnerable Code Clone Discovery. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 595–614.

[12] Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong, and Heejo Lee. 2021.

OCTOPOCS: Automatic Verification of Propagated Vulnerable Code Using Re-

formed Proofs of Concept. In 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 174–185.

[13] Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security

Patches. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2201–2215.

[14] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs

via Semantic- and Context-Aware Criticalness and Constraints Inferences. In

2019 28th USENIX Security Symposium (Security). 1769–1786.
[15] Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and Giovanni

Vigna. 2020. SPIDER: Enabling Fast Patch Propagation in Related Software

Repositories. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1562–
1579.

[16] Microsoft. 2019. Microsoft Build C6328. https://docs.microsoft.com/en-us/cpp/

code-quality/c6328?view=msvc-160

[17] MITRE. 2021. CWE-676: Use of Potentially Dangerous Function. https://cwe.

mitre.org/data/definitions/676.html

[18] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,

Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. VCCFinder: Finding Potential

Vulnerabilities in Open-Source Projects to Assist Code Audits. In 2015 Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 426–437.

[19] Google Cloud Platform. 2021. Google Bigquery StackOverflow Data. https:

//cloud.google.com/bigquery/public-data.

[20] Reddit. 2018. Docker for Windows won’t start if Razer Synapse 3 is

running. https://www.reddit.com/r/docker/comments/815l9n/docker_for_

windows_wont_start_if_razer_synapse_3/

[21] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V

Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big Code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). 1157–
1168.

[22] Offensive Security. 2021. Exploit Database. https://www.exploit-db.com/.

[23] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and

Alireza Karami Motlagh. 2020. An Empirical Study of C++ Vulnerabilities in

Crowd-Sourced Code Examples. IEEE Transactions on Software Engineering
(2020).

[24] Shaowei Wang, Tse-Hsun Chen, and Ahmed E Hassan. 2018. How Do Users

Revise Answers on Technical Q&A Websites? A Case Study on Stack Overflow.

IEEE Transactions on Software Engineering 46, 9 (2018), 1024–1038.

[25] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2019. Detecting

"0-Day" Vulnerability: An Empirical Study of Secret Security Patch in OSS. In 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 485–492.

[26] Wikipedia. 2021. Jaccrd index. https://en.wikipedia.org/wiki/Jaccard_index.

[27] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.

2021. V0Finder: Discovering the Correct Origin of Publicly Reported Software

Vulnerabilities. In 2021 30th USENIX Security Symposium (Security). 3041–3058.
[28] Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh. 2021.

CENTRIS: A Precise and Scalable Approach for IdentifyingModified Open-Source

Software Reuse. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 860–872.

[29] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How

do developers utilize source code from stack overflow? Empirical Software
Engineering 24, 2 (2019), 637–673.

[30] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,

Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. 2020. MVP: Detecting Vulner-

abilities using Patch-Enhanced Vulnerability Signatures. In 2020 29th USENIX
Security Symposium (Security). 1165–1182.

[31] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and

Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy (SP). IEEE, 590–604.

[32] Yanfang Ye, Shifu Hou, Lingwei Chen, Xin Li, Liang Zhao, Shouhuai Xu, Jiabin

Wang, and Qi Xiong. 2018. ICSD: An Automatic System for Insecure Code

Snippet Detection in Stack Overflow over Heterogeneous Information Network.

In 2018 Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC). 542–552.

[33] Haoxiang Zhang, ShaoweiWang, Tse-HsunChen, andAhmed EHassan. 2021. Are

Comments on Stack Overflow Well Organized for Easy Retrieval by Developers?

ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021),
1–31.

[34] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and

Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reliable?:

A Study of API Misuse on Stack Overflow. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 886–896.

[35] Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim. 2019. Analyzing and Sup-

porting Adaptation of Online Code Examples. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 316–327.

A SECURITY-SENSITIVE API

Table 7 and Table 8 show lists of security-sensitive APIs utilized

by Dicos. The APIs were selected by referring to existing ap-

proaches [5, 7, 34] and the CWE-676 document [17].

Table 7: Security-sensitive APIs for C/C++ posts.

C/C++ security-sensitive APIs

strcpy, strncpy, strcat, strncat, system, memcpy, memset, malloc,
gets, vfork, realloc, pthread_mutex_lock, free, chroot, strlen,
vsprintf, sprintf, scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf,
snprintf, atoi, strtok, strcmp, strncmp, strcasecmp,
strncasecmp, memcmp, signal, va_arg.

Table 8: Security-sensitive APIs for Android posts.

Android security-sensitive APIs

hostnameverifier, trustmanager, sslcontext, cipher, webview,
setseed, messagedigest, secretkey, keystore, pbekeyspec,
nextbytes, signature, keyfactory, connectionspec, sslsocketfactory,
ivparameterspec

B SECURITY-RELATED KEYWORD

Table 9 lists the selected security-related keywords and their catego-

rization. We selected these security-related keywords by referring

to existing approaches [7, 9] and by analyzing commit messages of

known CVE patches (see section 3).

Table 9: Selected security-related keywords categorized as

nouns, modifiers, and verbs.

Category Security-related Keywords

Nouns vulnerab, fault, defect, sanit, mistake, flaw, bug,
infinite, loop, secur, overflow, error, remote,
mitigat, realloc, heap, privilege, underflow, attack,
DoS, denial-of-service, initiali, xss, leak, patch,
authori, corruption, crash, memory, null, injection,
out-of-bounds, use-after-free, dereferenc, buffer,
hack, segment, authentication, exploit.

Modifiers incorrect, vulnerab, harm, undefine, unpredict, unsafe,
secur, malicious, dangerous, critical, bad, unprivileged,
negative, stable, invalid.

Verbs flaw, hack, fix, change, modify, exploit, mitigat, leak,
realloc, invoke, inject, ensure, reject, initiali, fail,
authori, update, attack, trigger, lock, corrupt, crash,
prevent, avoid, access, cause, overflow, terminat.

https://docs.microsoft.com/en-us/cpp/code-quality/c6328?view=msvc-160
https://docs.microsoft.com/en-us/cpp/code-quality/c6328?view=msvc-160
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cloud.google.com/bigquery/public-data
https://cloud.google.com/bigquery/public-data
https://www.reddit.com/r/docker/comments/815l9n/docker_for_windows_wont_start_if_razer_synapse_3/
https://www.reddit.com/r/docker/comments/815l9n/docker_for_windows_wont_start_if_razer_synapse_3/
https://www.exploit-db.com/
https://en.wikipedia.org/wiki/Jaccard_index

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Discussions in Stack Overflow
	2.2 Motivating example
	2.3 Overview of Dicos

	3 Feature selection
	4 Insecure code snippet discovery
	4.1 Extracting the change history of a post
	4.2 Analyzing the extracted change history
	4.3 Determining insecure code snippets

	5 Evaluation
	5.1 Dataset and implementation
	5.2 Discovery accuracy of Dicos
	5.3 Comparison with the existing approach
	5.4 Effectiveness of the utilized techniques
	5.5 Performance of Dicos

	6 Findings
	6.1 Creation time of a post and vulnerabilities
	6.2 Acceptance of a post and security
	6.3 Types of insecure code snippets
	6.4 Reusing insecure code snippets in the wild

	7 Related Works
	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Security-sensitive API
	B Security-related keyword

