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ABSTRACT Security patches play an important role in detecting and fixing one-day vulnerabilities.
However, collecting abundant security patches from diverse data sources is not a simple task. This is
because (1) each data source provides vulnerability information in a different way and (2) many security
patches cannot be directly collected from Common Vulnerabilities and Exposures (CVE) information (e.g.,
National Vulnerability Database (NVD) references). In this paper, we propose a high-coverage approach
that collects known security patches by tracking multiple data sources. Specifically, we considered the
following three data sources: repositories (e.g., GitHub), issue trackers (e.g., Bugzilla), and Q&A sites
(e.g., Stack Overflow). From the data sources, we gather even security patches that cannot be collected
by considering only CVE information (i.e., previously untracked security patches). In our experiments, we
collected 12,432 CVE patches from repositories and issue trackers, and 12,458 insecure posts from Q&A
sites. We could collect at least four times more CVE patches than those collected in existing approaches,
which demonstrates the efficacy of our approach. The collected security patches serves as a database on a
public website (i.e., IoTcube) to proceed with the detection of vulnerable code clones.

INDEX TERMS Open Source Software, Software security, Vulnerability database

I. INTRODUCTION

As the open-source supply chain has been accelerated, the
open-source vulnerabilities are also in the limelight. Accord-
ing to the “State of the Software Supply Chain Report” of
Sonatype [20], 29% of popular open-source software (OSS)
projects contain at least one known vulnerability that may
become the attack surface to exploit the entire system (i.e.,
called one-day exploits). In practice, cyberattacks which
aimed at OSS projects have exponentially grown. For exam-
ple, supply chain attacks, which are caused by the improper
management of OSS, increased 650% in 2021 [20].

To prevent such attacks, developers mainly use the follow-
ing two methods: (1) OSS version updates (e.g., [5], [26]) and
(2) fixing vulnerable source codes by leveraging Common
Vulnerabilities and Exposures (CVE) information (e.g., [9],
[10], [27]). To proceed with such methods, especially the lat-
ter one, it is necessary to construct a large-scale vulnerability
database, which is containing security patches and vulnerable
codes [21], [23].

Limitations of existing approaches. Despite the impor-
tance of constructing a vulnerability database, existing ap-
proaches have limited in terms of collecting abundant secu-
rity patches. Several approaches (e.g., [11], [18], [21]–[23],
[25]) attempted to construct vulnerability database, but they
exhibited low patch collection coverage owing to the follow-
ing two reasons: (1) limited data sources and (2) shallow
scanning problems. Although vulnerability information is
distributed among various data sources, previous approaches
only focused on GitHub as their target data source for collect-
ing security patches. In addition, most existing approaches
considered only the security patches where the patch URL
was provided in the NVD references, resulting in missing
many security patches. Although some approaches [10], [25]
took into account the hidden security patches that could be
collected by searching for CVE ID keywords (in commit
messages), simply matching keywords may lead to many
false positives. Thus, we need to collect security patches that
are not directly provided by considering various data sources.
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Our approach. In this paper, we propose a high-coverage
approach that collects known security patches by track-
ing multiple data sources. We construct a large-scale patch
database called xVDB (Extended Vulnerability DataBase) by
applying our approach. The key idea of our approach, which
is distinguishable from existing approaches, is to collect
known security patches by leveraging hidden connectivity
between public vulnerability databases and security patches.

To address the limited data source problem, we consider
the following three data sources: (1) repositories, issue track-
ers, and Q&A sites. Repositories (e.g., GitHub) are most
widely used when managing software source codes, and issue
trackers (e.g., Bugzilla) are widely leveraged for managing
security bugs and vulnerabilities. Moreover, Q&A sites (e.g.,
Stack Overflow) are not managed by publicly disclosed
vulnerability database, such as the NVD, but insecure code
snippets are being produced from such sites and propagated
to OSS [6], [7]. Therefore, we determined that a wealth of
security patches could be gathered from the aforementioned
three data sources.

To address the shallow scanning problem, we first classify
vulnerabilities based on the method of providing security
patches: vulnerabilities with (1) direct patch links, (2) in-
direct patch links, and (3) invisible patch links. We then
devise three patch collection methods according to each link
type: (1) a method that directly collects security patches from
CVE information (i.e., direct patch links), (2) a method that
collects security patches using hints (e.g., commit ID) on the
website provided by CVE information (i.e., indirect patch
links), and (3) a method that collects security patches from
a data source by checking whether patches have security-
related features, e.g., CVE ID keywords and security sensi-
tive APIs (i.e., invisible patch links).

Evaluation and findings. In our experiments, we collected
12,432 CVE patches from repositories and issue trackers
for the C, C++, Java, JavaScript, Python and Go languages.
In addition, we collected 12,458 insecure posts from Q&A
sites for C, C++ and Android posts. The collected security
patches are at least four times more than those collected in the
existing approaches, which is demonstrating the high patch
collection coverage of our approach (see Table 2).

Our further analysis affirmed that xVDB exhibits the fol-
lowing five characteristics (see Section IV-C): (1) many se-
curity patches that urgently need to be patched (i.e., medium
and high severity) were collected in xVDB, (2) various types
of vulnerabilities, including “Buffer Overflow” and “Out-of-
bounds Read and Write”, were gathered in xVDB, (3) more
than half of the vulnerabilities were collected via indirect and
invisible patch links, (4) most security patches were related
to C/C++ languages, and (5) the reference site where the
most patches were collected was GitHub, but a considerable
number of security patches were collected via issue trackers.

We serviced xVDB as a database to detect vulnerable code
clones on a public website (i.e., IoTcube [8]) to contribute to
the security of the software ecosystem.

This paper makes the following three contributions:
• We propose xVDB, a vulnerability database that is

constructed using a high-coverage patch collection ap-
proach. The key idea of our approach is collecting
known security patches by identifying hidden connec-
tivity (e.g., commit ID and CVE ID keywords) between
public vulnerability databases and security patches.

• When we applied our approach, we collected 12,432
CVE patches from the repositories, issue trackers, and
12,458 insecure posts from the Q&A sites. Our ap-
proach could collect at least four times more CVE
patches than those collected in existing approaches.

• We utilized xVDB as a database to detect vulnerable
code clones on IoTcube [8], a public web platform for
discovering security vulnerabilities in software.

II. MOTIVATION
In this section, we introduce several terms used throughout
this paper and then clarify our target problems.

A. BACKGROUND AND TERMINOLOGY
1) PUBLIC VULNERABILITY DATABASE
To mitigate risks caused by known security vulnerabili-
ties, previously discovered vulnerabilities once discovered
are managed through a public vulnerability database (e.g.,
NVD [15], CVE MITRE [14], and CVE Details [4]) in the
form of CVE.

Although there are slight differences between public vul-
nerability databases, the following pieces of information are
commonly provided by them:

• CVE ID: A vulnerability unique identifier assigned by
the MITRE corporation

• Descriptions: A summary of the overall introduction
of each vulnerability, including affected products and
attack vectors

• Severity: An indicator that represents the severity of a
vulnerability (e.g., CVSS)

• Types: A value indicating the type of vulnerability, such
as buffer overflow or remote code execution. CWE is
mainly used.

• Affected software configurations: The name and ver-
sion information of the software that are affected by
the vulnerability (e.g., Common Platform Enumeration,
CPE for short)

• References: A set of reference links related to the
vulnerability. This includes URLs that contain the patch
or a reproduction method for the vulnerability.

2) KNOWN AND UNKNOWN VULNERABILITIES
We define a known vulnerability as a vulnerability that is
managed by public vulnerability databases by assigning a
CVE ID. All known vulnerabilities have corresponding se-
curity patches that are often disclosed through GitHub com-
mits [11] or issue trackers such as Bugzilla [25]. By contrast,
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we define an unknown vulnerability as a vulnerability that
is not managed by CVE. Here we define that unknown
vulnerabilities are patched secretly but are not managed by
CVE from the public vulnerability database. This concept
is somewhat different from a zero-day security vulnerability,
which may still exist in the latest version of certain software
without being patched.

3) SECURITY PATCH
We define a security patch as a source code-level patch that
is applied to resolve security issues [10], [27]. In general,
security patches are provided in the form of “diff” of a code
before and after applying the patch. For example, Listing 1
shows the security patch snippet for CVE-2021-41216, a
heap buffer overflow vulnerability in TensorFlow.

Listing 1: Security patch snippet for CVE-2021-41216.
1 diff --git a/tensorflow/core/ops/array_ops.cc
2 b/tensorflow/core/ops/array_ops.cc
3 index 64bd4f3847854..14c9efae1ddd3 100644
4 --- a/tensorflow/core/ops/array_ops.cc
5 +++ b/tensorflow/core/ops/array_ops.cc
6
7 @@ -168,7 +168,7 @@ Status TransposeShapeFn(...) {
8
9 for (int32_t i = 0; i < rank; ++i) {

10 int64_t in_idx = data[i];
11 - if (in_idx >= rank) {
12 + if (in_idx >= rank || in_idx <= -rank) {
13 return errors::InvalidArgument("perm dim ",

in_idx, " is out of range of input rank ",
rank);

14 }

From the security patch, we can obtain several pieces
of information for efficient vulnerability management. For
example, we can identify the vulnerable and patched source
files (i.e., array_ops.cc), the index values of files before
and after applying the patch (i.e., line #3 in Listing 1), the
code line numbers to which the patch was applied (i.e., 7
lines from line #168 in the “array_ops.cc” file), and the
actual code lines that were added or deleted in the security
patch (i.e., lines #11 and #12 in Listing 1).

B. GOAL AND CHALLENGE STATEMENT

Goal. In this paper, we construct a vulnerability database
(called xVDB) by collecting information on known vulner-
abilities. Specifically, our main goal is to collect security
patches of vulnerabilities at the source code levels, which
can be used to detect one-day vulnerabilities [9], [10], [27].
Subsequently, xVDB can assist in detecting propagated vul-
nerabilities (i.e., 1-day vulnerabilities) and consequently, can
be used to mitigate threats caused by vulnerable code reuse.

Constructing a rich and well-refined vulnerability dataset
is important because it has a significant impact on the vulner-
ability detection process. Since most of the existing one-day
vulnerability discovery techniques (e.g., [10], [27]) detect
vulnerabilities based on the collected vulnerability data, fail-
ing to construct an abundant and well-refined vulnerability
dataset may compromise the vulnerability detection accuracy
(e.g., missing many vulnerabilities).

Challenges. The collection of security patches is not a
simple task. The biggest obstacle is the diversity of data
sources. Vulnerability information is distributed among var-
ious sources, such as repositories (e.g., Git), vulnerability
databases (e.g., NVD), and issue trackers (e.g., Bugzilla), in
various forms.

Since the data sources provide vulnerability information
in different ways and are complementary to one another,
considering only one data source may result in a biased and
insufficient dataset. For example, Kim et al. [10] collected
vulnerability information only from GitHub, and Woo et
al. [25] considered GitHub and issue trackers. However, a
recent study (i.e., PATCHSCOUT [21]) demonstrated that ap-
proaches that considered only a part of data sources showed
a low patch collection coverage (i.e., at most 53%) and lack
of accuracy (i.e., only 47% of the collected data was accu-
rate). In particular, in PATCHSCOUT, a significant amount of
human intervention is required to collect security patches.

Moreover, each data source may not explicitly provide vul-
nerability information. For example, a commit that patched a
specific vulnerability exists on GitHub, and the vulnerability
is registered in a public vulnerability database with a specific
CVE ID. However, there may not be a direct connection
between the patch commit URL and corresponding CVE
vulnerability (i.e., invisible links). Therefore, there is a need
for an automated method that can collect security patches
while considering various data sources.

III. METHODOLOGY

Data sources

vQ&A sites

vIssue 
trackersvReposito

ries xVDB

Collect security patches

with direct links

with indirect links

with invisible links

Diff files for 
security patches

FIGURE 1: High-level workflow of xVDB construction.

In this section, we introduce the methodology for con-
structing xVDB. The high-level workflow for constructing
xVDB is shown in Figure 1. The main goal of our approach
is to collect known security patches by tracking multiple
data sources. To address the low coverage from limited data
sources, we collect security patches from three target data
sources: repositories, issue trackers, and Q&A sites. Then,
we collect known security patches by identifying hidden con-
nectivity between public vulnerability databases and security
patches. We describe the collection method for obtaining
security patches directly and indirectly from CVE informa-
tion (see Section III-B2, and Section III-B3). In addition, we
introduce the method of collecting security patches that are
invisible in CVE information but can be collected from data
sources (see Section III-B4).

A. DEFINITION
This section introduces the key definitions used in our ap-
proach.
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Definition 1) Basic terms. We first define a few terms
upfront. CVE info page denotes an information page for
each CVE in the public vulnerability database (e.g., NVD
and CVE MITRE). CVE patch page refers to the page with
the patch of the CVE vulnerability. Self-managed repository
refers to a repository where the software manages its source
code through its own management system rather than being
managed by a major hosting platform such as GitHub.

Definition 2) Classification of patch links. We categorize
security patches based on the method of providing security
patches from the CVE info page. Since each target data
source has the characteristic of providing security patches,
and therefore we propose the appropriate collection methods
by categorizing patches. To this end, we classified vulnera-
bilities into the following three types: vulnerabilities with (1)
direct patch links, (2) indirect patch links, and (3) invisible
patch links (see Figure 2).

Direct

…

CVE
info 
page

CVE
patch
page

Website

Invisible

X

Indirect

CVE
info 
page

CVE
info 
page

CVE
patch
page

CVE
patch
page

CVE
info 
page

FIGURE 2: Vulnerability classification according to the
way that the security patch is served.

(1) Direct patch link: This refers to the case where the
CVE patch page is directly provided by the CVE info
page.

(2) Indirect patch link: This refers to the case whre the
CVE patch page is indirectly provided by the CVE
info page, e.g., the CVE info page provides a website
containing the security patch URL such as Bugzilla
bulletin board.

(3) Invisible patch link: This refers to the case where the
link between the CVE patch page and the CVE info page
is invisible.

Definition 3) Target data sources. To collect security
patches, we target the following three data sources: (1)
repositories, (2) issue trackers, and (3) Q&A sites. Known
vulnerabilities and their corresponding patches are primarily
shared via the three target data sources. Here, we explain in
detail the reason for selecting each data source.

(1) Repositories (i.e., software repositories) are storage
locations for the collection of files of various different
versions of software programs. Since many software
products are developed in collaboration with develop-
ers, repositories are most widely used when managing

software programs. In particular, when a vulnerability is
discovered in the software source code, developers tend
to provide a patch code with a relevant message via the
repositories. Therefore, we first select the repositories as
our target data source. To create and manage the repos-
itories, version control systems such as Git, Subversion
(i.e., SVN) and Mercurial are used. In particular, we
focus on Git as our target data source.

(2) Issue trackers are tools for tracking bugs and managing
other issues in software vendors. Each vendor tends to
manage issues with their own issue tracking systems
(e.g., Mozilla manages with bugzilla.mozilla.org). Since
a considerable number of vulnerabilities were issued
and reported to CVE (which accounts for 5% of the total
CVEs), we select issue tracker as our target data source.

(3) Q&A sites (e.g., Stack Overflow) are platforms that
discuss code problems, and many developers rely on
such platforms [17]. Although insecure code snippets
from these platforms may be conveyed to OSS [6], [7],
the insecure code snippets are not managed by the pub-
lic vulnerability database. Therefore, we also consider
Q&A sites as our targe data source. In particular, we
focus on Stack Overflow as our target data source.

B. COLLECTING SECURITY PATCHES
In this section, we introduce our key idea that was extracted
from our observations, and then propose patch collection
methods for each link type.

1) KEY IDEA
Observation

[Direct patch link]
The CVE info page provides the CVE patch page via
references (e.g., NVD reference URL), and the URLs
have certain patterns.
[Indirect patch link]
To provide security patches, the CVE info page pro-
vides websites (e.g., issue trackers and self-managed
repositories) via references. The websites may con-
tain a hint introducing a CVE patch page (e.g., Bug
ID and commit).
[Invisible patch link]
Even if there is no link that introduces the CVE patch
page in a CVE info page, the CVE patch page may
contain the corresponding CVE ID.

We first observed that a direct patch link is pro-
vided in certain patterns, depending on the hosting plat-
form (e.g., GitHub, GitLab, Cgit, and GitWeb). The
patterns are that the patch links contain the git plat-
form domain name (e.g., github.com and gitlab.com)
and the string “commit”. For example, patch links
hosted on GitHub are provided in the following format:
https://github.com/user/repo/commit/commit_ID.
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CVE-2020-14323 

https://bugzilla.redhat.com/show_bug.cgi?id=1891685

Depth 0) CVE 

Depth 1) Reference link 

Depth 2) Patch commit 

Commit
URLs

FIGURE 3: Example of where patches can be collected
through the website provided by the CVE info page.

In addition, we observed that some websites provided by
the CVE info page contain a hint that introduces the CVE
patch page. For example, when an issue is uploaded to an
issue tracker site, developers tend to leave the comments
with patch commits on the issue page. Figure 3 presents
an example of an indirect patch link. The CVE info page
provides the issue link as references, and the issue post
contains corresponding patch links raised by comments.

Lastly, we observed cases in which a CVE ID was found
on the CVE patch page, even though there is no link related
to the security patch on the CVE info page. This is because
when known vulnerabilities are patched, developers tend to
leave a commit message with their CVE ID.

Listing 2: OpenVPN commit #cb4e35e.
[Commit message]

Fix potential double-free in --x509-alt-username
(CVE-2017-7521)

[NVD Descriptions of CVE-2017-7521]

OpenVPN versions before 2.4.3 and before 2.3.17
are vulnerable to remote denial-of-service due to
memory exhaustion caused by memory leaks and
double-free issue in extract_x509_extension().

As an example of an invisible patch link, we introduce
the case of CVE-2017-7521, a double-free vulnerability (see
Listing 2). Although the CVE-2017-7521 info page does
not provide a link for security patches, we can discover the
security patch by searching with CVE ID.

Therefore, we collect security patches by leveraging these
observations. Figure 4 illustrates our model of collecting
patches using a hidden connectivity between the CVE info
page and the CVE patch page. For indirect patch links,
some websites provide hints (e.g., commit ID) leading to
CVE patches; this means that there is a hidden connectivity
between those websites and CVE patches. Accordingly, we
collect corresponding CVE patches by scanning data sources

vRepositories

Indirect or
invisible CVE

info 
page
CVE
info 
page

CVE
patch
page

Data sources

Hidden connectivity Scanning

v vQ&A sitesIssue
trackers

FIGURE 4: Patch collection model using a hidden connec-
tivity between the CVE info page and the CVE patch page.

with the obtained hints. For invisible patch links, we consider
the CVE ID keyword as a hidden connectivity between the
CVE patch and the CVE info page. Therefore, to collect
corresponding CVE patches, we utilize the CVE ID keyword
to scan the data sources.

However, not all data sources can apply all link types to
collect security patches. Because only six CVE vulnerabili-
ties were referenced in the case of Q&A sites, it is difficult
to apply the collection method with a direct or indirect patch
link. In addition, it is rare to provide patches directly to the
issue trackers and therefore we could not apply the collection
method with a direct patch link in the issue tracker cases.
Therefore, we summarize the applicable data sources by the
link type in Table 1.

TABLE 1: Applicable data sources by the link type.

Data source
Type of link

Direct Indirect Invisible

Repositories " " "

Issue trackers " "

Q&A sites "

2) DIRECT PATCH LINK COLLECTION

We first introduce a method for collecting security patches
with direct patch link. Given a CVE info page as an input, we
collect the CVE patch page by checking whether it is a direct
patch link hosted on Git platforms (e.g., Github, Gitlab, Cgit
and Gitweb). Here are the steps for collecting patches:

(1) Search the URL in reference links: We first col-
lect commit URLs with the keyword “commit”
and the name of Git platforms. For example, the
CVE-2020-14147 info page provides the CVE patch
page of GitHub with a direct link with the URL
“https://github.com/redis/redis/commit/ef764dd”.

(2) Download the repository in a local environment: This
step is a prerequisite for extracting security patches. To
download the repository into the local environment, the
command git clone repository_url is required.
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(3) Extract the diffs: We then extract the diffs related to the
retrieved commits using the command git show com-
mit_id on a specific cloned repository. This command
shows the security patch codes in a unified diff format
and commit messages.

While security patches can be extracted by crawling the
URL retrieved in the first step, some platforms such as
GitWeb require preprocessing to extract the patches (e.g.,
replacing with a URL that can be crawled in the form of plain
text). Therefore, we propose the steps to extract a security
patch using Git commands.

3) INDIRECT PATCH LINKS COLLECTION
To collect security patches with indirect patch link, we
propose an in-depth scanning method that tracks the CVE
patch page by analyzing the website URL, given the CVE
info page. As explained in Section III-B1, issue trackers
(e.g., Bugzilla and GitHub issue page) and self-managed
repositories are considered in this phase. Given a CVE info
page as an input, the security patches are collected as follows:
(1) Crawl website URLs provided by the CVE info page:

To analyze the website URL, we first crawl the HTML
contents of the URL. We crawl the URL by requesting
it using a simple crawler (e.g., BeautifulSoup).

(2) Extract information addressing the CVE patch page:
Next, we find the information that may link to the
CVE patch page. There are two cases of collecting
information:
(2-1) Case with a direct link (e.g., Git commit URL) of

the CVE patch page (see Figure 3). If the direct
patch link is identified in the website contents, we
can apply the same method for the collection with
direct patch links (see Section III-B2).

(2-2) Case as a hint to the CVE patch page. We collect
information that can be used to find patch com-
mits on the website. For example, Mozilla records
bug IDs in the corresponding patch commit mes-
sages. Therefore, we can leverage the bug IDs to
find security patches.

(3) Search the patch commits and extract diffs: We then
search the patch commits with the information extracted
from the previous steps. For example, if a bug ID is
detected through Step (2-2), we can extract the corre-
sponding security patches by executing the command git
log –grep=‘bug ID’.

Since we do not know what information is leveraged to
find the security patch commits in Step (2-2), we conducted
a preliminary investigation of the information to be extracted.

As an example, we introduce CVE-2020-11655, a vul-
nerability that provides a patch to the SQLite software (see
Figure 5). Although the source code of SQLite is hosted on
GitHub, vulnerabilities of SQLite are managed by its own
management system. By leveraging the ID (i.e., SHA3-256)
that is provided in the website URL, we searched for rele-

CVE-2020-11655

https://www3.sqlite.org/cgi/src/info/4a302b42c7bf5e11

Depth 0) CVE 

Depth 1) Reference link 

Depth 2) Patch commit 

Hint for 
patch commit

Hint retrieved from
patch commit

FIGURE 5: Example of a case where security patches
can be obtained externally with information in the websites
provided by the CVE info page.

vant commits that contain such ID in the commit messages.
Finally, we can extract the diffs using the retrieved commit.

4) INVISIBLE PATCH LINKS COLLECTION
To collect patches with invisible links, we leveraged our
previous work, DICOS [7], which is an accurate approach for
discovering insecure code snippets in Stack Overflow posts.

Question

Answer

Comments

Code snippet

Description

FIGURE 6: Example Stack Overflow post (#122721). We
divide a post into three parts: question, answer, and com-
ments; the answer is further subdivided into code snippet and
description (i.e., narrative part excluding code snippets).

By leveraging DICOS, we can collect security patches with
missing links in the Q&A sites. The key idea of DICOS for
discovering insecure code snippets is leveraging user discus-
sions in Stack Overflow. In general, an answerer edits their
code snippets when they notice that their code has a flaw,
such as a security issue and thereafter, they leave all the edit
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logs in their post. Inspired by this process, DICOS analyzes
the change history of the post, as it provides significant hints
for discovering insecure code snippets. In a nutshell, DICOS
first extracts the the change history (i.e., diffs between the
oldest and latest revisions) from the Stack Overflow post for
the description, code snippets, and comments (see Figure 6).
DICOS then discovers insecure code snippets by analyzing
whether the extracted diffs are intended to fix a security issue
based on the selected features (i.e., security-sensitive APIs,
security-related keywords, and control flow information).

In addition, we collect security patches with invisible patch
links in the repositories and issue trackers by leveraging
DICOS. Here, we consider a commit as the same concept
as the change history of DICOS and therefore analyze the
commit message and diff of the source codes. Since the CVE
ID can be a hint for finding relevant commits, we search patch
commits by analyzing whether the commit message contains
“CVE-20” (the command git log –grep=‘CVE-20’ is used).
The algorithm for the patch collection methods is given in
Algorithm 1.

IV. FINDINGS
In this section, we provide the analysis results related to the
following four questions:

Q1. How do we implement our approach for constructing
xVDB? (Section IV-A)

Q2. How many security patches have we collected? (Sec-
tion IV-B)

Q3. What are the characteristics of the collected security
vulnerabilities? (Section IV-C)

Q4. How is our approach applied in the real world? (Sec-
tion IV-D)

A. IMPLEMENTATION OF OUR APPROACH
Based on the methodology presented in Section III, we
constructed xVDB collected from the repositories, issue
trackers, and Q&A sites. For repositories and issue trackers,
we targeted the C, C++, Java, JavaScript, Python, and Go
languages because our additional experiment affirmed that
these six languages belong to the top languages of the patches
reported as CVE. For Q&A sites, especially Stack Overflow,
we targeted C, C++, and Android posts because the reuse
of small pieces of code is prevalent in the software [6],
[10], [25], [26]. Note that the design of our approach can be
applied to any programming language.

Our approach was implemented on approximately 1,000
lines of Python code, excluding the external libraries (e.g.,
BeautifulSoup). We used DICOS, an open-source tool,
to collect security patches with invisible patch links on
the Q&A sites. The source code for DICOS is available at
https://github.com/hyunji-hong/DICOS-public.

B. COVERAGE OF xVDB
In our experiments, we collected 12,432 CVE patches from
the repositories and issue trackers, and 12,458 insecure posts

Algorithm 1: Algorithm for collecting security patches.
Input: V, C, R
// V: Vulnerability, C: CVE info page,
// R: Repository reporting V
Output: P
// P: Security patch for V

1 procedure EXTRACTINGPATCH
(
V, C, R

)
2 Ref← References(V, C)
3 for URL in Ref do
4 if (“git” in URL) and (“commit” in URL) then

// Collect P with direct patch links
5 P← Crawl(URL)

6 else
// Collect P with indirect patch links

7 if GitURL in Visit(URL) then
8 P← Crawl(GitURL)

9 else if H in Visit(URL) then
// H: Hints for detecting patches
(e.g., Commit ID or Bug ID)

10 for Cm in R do
// Cm: Commit

11 P← GetPatchCommit(Cm, H)

// Collect P with invisible patch links
12 for Cm in R do
13 if “CVE-20” in Cm then
14 if (IsControlFlowChanged(Cm) or

IsSecurityAPIChanged(Cm)) then
15 P← Cm

16 return P

from the Q&A sites. To demonstrate that our approach has
higher coverage than those proposed in previous approaches,
we compared the security patches in xVDB with those of
existing approaches.

Methodology for comparison. We reviewed several ap-
proaches that attempted to collect security patches [10]–
[12], [18], [21], [23], [25]. We classified the number of
security patches collected by existing approaches according
to the link type we defined. Note that we did not consider
the unknown security patch discovery and therefore, we
performed comparison experiments for the known security
patch discovery. Table 2 shows the results of the experiments.

Result analysis. We confirmed that our approach signifi-
cantly outperformed existing approaches, as we could collect
at least four times more than the other approaches and even
collected insecure posts from the Q&A sites.

We first confirmed that CVE patches with a direct patch
link were collected more than the other approaches. Although
we considered various programming languages, most patches
were for C and C++ languages (accounting for 81% of the
total; details are presented in Section IV-C4). Considering
that most of the existing approaches only collected C/C++ se-
curity patches, it can be seen that our approach still collected
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TABLE 2: Coverage of xVDB.

Approach
Direct Indirect Invisible Total

R∗ R∗ IT† R∗ IT† QA‡

[18] 718 X X X X X 718 CVE
[11] 3,094 X X X X X 3,094 CVE
[10] X X X 3,551 X X 3,551 CVE
[12] 809 X X X X X 809 CVE
[25] 3,246 X X X 2,425 X 5,671 CVE
[23] 4,076 X X X X X 4,076 CVE

xVDB 6,387 1,644 3,020 2,966 1,766 12,458 12,432 CVE
12,458 Posts

R∗: Repositories
IT†: Issue trackers
QA‡: Q&A sites

more patches; this is because, existing approaches mainly
considered GitHub among the various Git platforms.

Although most approaches did not cover the collection
methods proposed in our approach (e.g., collecting indirect
and invisible patch links), VUDDY [10] and V0Finder [25]
collected patches with invisible patch links. We confirmed
that VUDDY and V0Finder collected more security patches
(i.e., 3,551 and 2,425 CVE patches, respectively) than xVDB.
This is because they collected security patches by searching
for the keyword “CVE-20” in commit messages, which may
easily produce false positives. However, our approach re-
duces such false positives by analyzing whether patches con-
tain “CVE-20” as well as control flow changes or security-
sensitive API changes (see Section III-B4).

Figure 7 represents the comparison results of xVDB and
the existing approach [25] by each link type. Here, some
patches coexist on multiple link types, thus we consider the
following priority: (1) direct, (2) indirect, and (3) invisible.
As a result, 6,387 CVE patches (51%) are categorized as the
direct link, 2,358 CVE patches (19%) belong to the indirect
link, and the remaining 3,687 CVE patches (30%) are clas-
sified as the invisible patch link. We selected V0Finder [25],
which collected the most security patches (i.e., 5,671 security
patches) among existing approaches, as a comparison target.

From our experiments, our approach improved 1.9 times
and 1.5 times of the direct link and invisible links stored in
V0Finder, respectively; Our approaches collected 2.1 times
more security patches than V0Finder.

As shown in Figure 7 and Table 2, most existing ap-
proaches could cover only some parts of direct and invisible
patch links, resulting in collecting fewer patches than we
stored in xVDB; this result demonstrates that our approach
has higher coverage compared to the existing approaches.

C. CHARACTERISTICS OF PATCHES ON xVDB
To identify the characteristics of security patches in xVDB,
we examined security patches from six perspectives. To state
the conclusion first, we introduce the key findings:

(1) Many security patches that urgently need to be patched
were collected in xVDB. (Section IV-C1)

Direct Indirect Invisible Total

12,432

3,687
2,358

6,387
5,671

2,425
0

3,246

Existing approach 
xVDB

1.9 times 
increase

2.1 times 
increase

0
0

1.5 times 
increase

0

0

0

0

FIGURE 7: Comparison results of xVDB and the existing
approaches [25] by link type.

(2) Many security patches in xVDB were classified as types
that require boundary checking. (Section IV-C2)

(3) More than half of the security patches were collected via
indirect and invisible patch links. (Section IV-C3)

(4) Most security patches (81%) were related to C/C++
languages. (Section IV-C4)

(5) The reference site where the most patches were col-
lected was GitHub, but a considerable number of secu-
rity patches were collected via issue trackers. (Section
IV-C5 and Section IV-C6)

1) SEVERITY OF CVE PATCHES
To identify how critical the CVE vulnerabilities collected
in xVDB are, we used the Common Vulnerability Scoring
System (CVSS), which is a standard vulnerability metric.

Number of  CVEs

0 1 2 3 4 5 6 7 8 9 10

166 160

747
351

3,442

2,107 1,924

2,537

41
557 364

FIGURE 8: CVSS distribution of CVE patches in xVDB.

Figure 8 represents the distribution of CVSS scores in
xVDB (specifically, we measured with CVSS version 2).
Since the scores are represented to one decimal place, we
aggregated the total number of CVE within the range (e.g.,
score 7.8 is counted as score 7). As shown in Figure 8,
we collected vulnerabilities with various levels of severity,
rather than focusing on a specific level. Most vulnerabilities
in xVDB are distributed in the medium level (i.e., low: 0 to
3.9, medium: 4 to 6.9, and high: 7 to 10).

We also compared our results with the vulnerabilities
disclosed by CVE MITRE [14] (see Figure 9); we confirmed
that 6% to 7% vulnerabilities were collected for each severity
level. This further represents that the reason most vulner-
abilities in xVDB are distributed at the medium severity
level is that a large portion of disclosed vulnerabilities also
belong to the medium severity level. As 89% of the security
patches (11,008) collected in xVDB showed medium or high
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Low 

MediumHigh

56,641 103,443

19,593

3,535 7,473

1,424

1

1,0
00

1,0
00
,00
0

xVDB Total CVE (CVSS score 4 - 6.9)(CVSS score 7 - 10)

(CVSS score 0 - 3.9)

FIGURE 9: Comparison results of vulnerabilities in xVDB
and vulnerabilities disclosed by CVE MITRE [14] based on
CVSS (logarithmic scale).

severity, we determined many vulnerabilities that needed to
be patched urgently in the real-world software ecosystem
were collected in xVDB.

2) TYPES OF CVE PATCHES
To identify the type of each CVE patch, we used Common
Weakness Enumeration (CWE) assigned to each CVE, which
is a standard for software weakness types. With the collected
CVE patches, we simply counted the number of CWE, and
confirmed that 202 unique types of CWE were detected in
xVDB. Table 3 represents the top 10 CWE types in xVDB.

TABLE 3: Top 10 CWE distribution discovered in xVDB.

Rank #CWE ID #Weakness name #Counting
1 CWE-119 Buffer Overflow 1,615
2 CWE-787 Out-of-bounds Write 871
3 CWE-125 Out-of-bounds Read 853
4 CWE-20 Improper Input Validation 755
5 CWE-200 Information Disclosure 586
6 CWE-264 Access Control Error 571
7 CWE-476 NULL Pointer Dereference 540
8 CWE-79 Cross-Site Scripting 432
9 CWE-416 Use After Free 423
10 CWE-190 Integer Overflow 334

From the results, we confirmed that various types of
vulnerabilities exist in xVDB. The most frequently appear-
ing type is “Buffer Overflow”, which can cause a system
crash and therefore, requires additional boundary checking
or avoidance of using standard library functions (e.g., scanf
and gets). Furthermore, we confirmed that “Out-of-bounds
Write and Read” also account for a large part, and they also
require additional boundary checking.

3) YEAR DISTRIBUTION OF CVE PATCHES
We then investigated the distribution of years in which secu-
rity patches were disclosed from 1999 to 2022. The results
are depicted in Figure 10.
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FIGURE 10: Year distribution of CVE patches in xVDB.
CVE patches collected via direct, indirect, and invisible links
and total CVE patches in xVDB are represented.

Although direct links are the most collected link type each
year, indirect and invisible links also accounted for a large
proportion of the total each year. As an example, in 2017,
only 270 CVE patches could be collected when collecting
patches via direct links. However, since we covered even
indirect and invisible links, we could collect 2,237 CVE
patches. This result affirmed that our approach could collect
more security patches than the existing approaches that col-
lected only via direct patch links.
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FIGURE 11: Cumulative graph of CVE patches collected
by three link types by year (direct, indirect, and invisible
patch links).

The cumulative graph by year of each link type is depicted
in Figure 11. When examining only the ratio of link types,
we can confirm that the proportion of direct patch links
is gradually increasing. This indicates that as developers
become more concerned with security, more CVE vulnerabil-
ities are being reported and managed with direct patch links.
Nevertheless, in most cases of each year, approximately
half of the vulnerabilities could be collected via invisible or
indirect patch links. Therefore, this suggests the need for an
approach that even collects hidden security patches, such as
the approach introduced in this paper.

When compared with the total number of reported CVEs
disclosed via the CVE MITRE [14], we confirmed that our
approach could collect an average of 6% of security patches
for each year. For example, in 2021, we found 1,526 security
patches (7.5%) among the 20,168 disclosed vulnerabilities.
Although this ratio does not seem large, in fact, considering
that the proportion of vulnerabilities that release patches is
not very high, this is a sufficiently significant number. We
discuss this in Section VI.
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4) LANGUAGE DISTRIBUTION OF CVE PATCHES
Next, we analyzed the language distribution of security
patches in xVDB.

JavaScript
(7%)

Java
(4%)

Go
(2%)

C/C++
(81%)

Python
(6%)

FIGURE 12: Language distribution of CVE patches in
xVDB.

As shown in Figure 12, C and C++ accounts for a large
portion (81%) of vulnerabilities in xVDB, i.e., 10,067 out
of 12,432 security patches. While many existing approaches
focused only on the C and C++ languages for constructing
the vulnerability database, we confirmed that other languages
accounted for approximately 19% of the total CVE patches
(i.e., accounting for 2,365 CVE patches). Therefore, we need
a technique that can collect security patches of various lan-
guages, and in that regard, we can claim the superiority of our
approach, which is not limited by programming language.

5) DATA SOURCE DISTRIBUTION OF CVE PATCHES
We further analyzed data sources for security patches in
xVDB, to identify which data sources the patches were
collected from.

Issue trackers

7,646 CVE 2,769 
CVE

Security patches in xVDB (total: 12,432 CVE / 12,458 Posts)

Repositories Q&A sites

12,458 Posts2,017 
CVE

FIGURE 13: Illustration for the coverage of the data sources
(repositories, issue trackers, and Q&A sites).

We confirmed that 12,432 CVE patches were collected
from the repositories and issue trackers, and 12,458 posts
were collected from the Q&A sites (see Figure 13). Most
of the CVE patches were collected from repositories (9,663
patches, 78% of the total), and 4,786 patches were collected
from issue trackers. We also confirmed that 42% (2,017) of
the patches collected from the issue tracker were identically

collected from the repositories. This is because a consid-
erable amount of vulnerabilities are reported to the issue
trackers before being reported to CVE MITRE [14] and thus
patches are delivered to the repositories and issue trackers
simultaneously.

As an example, the security patch of CVE-2020-35492
was collected from both the repository and the issue tracker.
This vulnerability is related to Cairo software, an open source
graphics library, and causes a stack buffer overflow. At first,
a security issue was reported on the issue tracker [2] on
November 2020. A corresponding patch was released to the
Cairo repository [3] on December 2020, and thereafter the
patch was provided as a direct link to the issue tracker. This
issue was reported and CVE issued on March 2021 in CVE
MITRE [14] with the issue tracker URL; and after a month,
the CVE reference site was modified to contain the direct
patch commit url as well.

However, it is worth noting that 58% (2,769) of CVE
patches collected from issue trackers could not be collected
in the repositories via direct and invisible patch links. This
suggests that issue trackers should also be considered as
target data sources, as we can collect a significant number
of patches.

6) REFERENCE SITE DISTRIBUTION OF CVE PATCHES
Finally, to identify which reference sites provide security
patches, we investigated the reference site distribution of
the CVE patches by analyzing 12,432 security patches in
xVDB. Note that one CVE may contain multiple security
patches. We collected the URLs from which CVE patches
can be extracted and classified them into the eight categories.
Figure 14 represents the measurement results.
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FIGURE 14: Distribution of reference sites of CVE patches
in xVDB.

Not surprisingly, GitHub provided the highest number
of security patches; this is because many OSS projects
are hosted via GitHub, and thus security issues are mainly
fixed with GitHub commit. Moreover, our experimental re-
sults show that issue trackers (e.g., Android, Mozilla, and
Chromium) and self-managed repositories (e.g., SQLite) ac-
count for a large proportion. This indicates the need to collect
patches from various data sources, which reveals the efficacy
of our approach.

D. APPLICATION
xVDB has been serviced online for free (at IoTcube [8])
since 2016. IoTcube provides several tools for detect-
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ing vulnerabilities. Specifically, xVDB is leveraged as a
database to detect vulnerable code clones, in conjunction
with VUDDY [10]. Since 2016, over 20K users including
commercial software developers, open-source committers,
and IoT device manufacturers have tested our platform. Fig-
ure 15 shows the main page of the IoTcube platform.

FIGURE 15: Main page of IoTcube.

IoTcube provides the statistics of xVDB; vulnerability
statistics by language, vulnerability statistics by repository,
and vulnerability statistics by year. Figure 16 illustrates the
vulnerability statistics by language and year, and Figure 17
shows the vulnerability statistics by repository in xVDB.

FIGURE 16: Vulnerability statistics by language and year
on IoTcube (which is shown in the VDB menu of IoTcube).

FIGURE 17: Vulnerability statistics by repository on
IoTcube (which is shown in the VDB menu of IoTcube).

FIGURE 18: Result page on IoTcube. IoTcube detected
1,016 vulnerable code clones in the Linux software.

FIGURE 19: Statistics for IoTcube white box testing (which
is shown in the Statistics menu of IoTcube).

To test vulnerable code clone detection technique in
IoTcube, users first generate hash values of functions from
the target software, using the “Hmark” tool, i.e., the imple-
mentation tool of VUDDY [10]; the function hash values of
the target software are embedded in the analysis file. There-
after, users upload the analysis file to the IoTcube server.
Finally, the IoTcube server gives the vulnerability detection
reports in the platform (see Figure 18). We provide sufficient
information for the detected vulnerabilities: the paths where
the vulnerabilities were detected, the top CVE occurrences,
the origin software of the detected vulnerabilities, distribu-
tion by year, CVSS, CWE, and tree view for vulnerable
function paths.

Figure 19 depicts the statistics for the IoTcube white box
testing (i.e., vulnerable code clone detection, VUDDY [10]).
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We confirmed that 26,464 users tested the tool, and approx-
imately one million vulnerable code clones were detected
from 83 million files since the release of IoTcube in 2016.
We further confirmed that CWE-119 (i.e., Buffer Overflow),
CWE-264 (i.e., Access Control Error), and CWE-399 (i.e.,
Resource Management Error) were the top three CWE types.

V. RELATED WORKS
In this section, we introduce a number of related works.

Public vulnerability database. There are various public
vulnerability databases [4], [13]–[15], [19] that can freely
search cybersecurity flaws assigned with a CVE ID. Such
databases can be classified into national-managed databases
and private company-managed databases. Many developers
and security engineers use these databases because new CVE
are updated via CVE MITRE, data feed [16] for the CVE
list can be obtained from NVD, and CVE Details provides
statistics on various criteria of CVE.

In addition, several companies including Snyk [19] and
Mend [13] (known as WhiteSource) provide company-
managed vulnerability databases. Compared to the national-
managed databases, they further provide details about which
version of the package manager is vulnerable to CVE.

However, such vulnerability databases do not fully provide
information to address security threats caused by the vulner-
abilities. Specifically, they do not essentially provide code-
level security patches for all the vulnerabilities. Therefore,
our approach provides vulnerable and patched code, making
it effective in mitigating security threats at the source code
level (we discuss this application in detail in Section VI).

Collecting known security patches. Several approaches
(e.g., [11], [12], [18], [21]–[23], [25]) have attempted to con-
struct vulnerability databases by collecting security patches.
However, most of the existing approaches only covered secu-
rity patches that could be collected from repositories, espe-
cially Git (e.g., [11], [12], [18], [21]–[23]), as we discussed
throughout this paper. In addition, they only focused on col-
lecting security patches with direct patch links, i.e., missing
many security patches with indirect and invisible patch links.
Although VUDDY [10] and V0Finder [25] considered the
collection method with an invisible patch link by searching
for the keyword “CVE-20” in the commit messages, the
method of collecting with only keyword features may cause
many false positives; note that our approach overcome this
problem by analyzing whether a patch contains “CVE-20”
as well as control flow changes or security-sensitive API
changes. In summary, existing approaches failed to collect
a sufficient number of security patches owing to the presence
of limited data sources and shallow scanning problems, while
our proposed approach could collect much more security
patches with higher patch collection accuracy.

VI. DISCUSSION

Storing vulnerable and patched codes. To easily detect
vulnerabilities, it is necessary to store security patches in a

processed form. Therefore, we consider the unit for storing
and the index to be used for vulnerability detection.

We determined that the function-level granularity unit is
the most appropriate when using xVDB for vulnerability
detection as the advantages of using the function unit (i.e.,
high performance and scalability) have been already verified
in existing approaches [1], [1], [10], [26], [27]. The method
of extracting vulnerable and patches functions from security
patches is a simple task that has been introduced in many
studies. Using the index values of the security patch (e.g., line
#3 in Listing 1), we can access the file before (resp. after)
applying the patch; we then extract the vulnerable (resp.
patched) function from the accessed source file.

Although these collected vulnerable and patched functions
can be directly utilized for vulnerability detection, most ex-
isting approaches use the hash value of the function the scal-
ability (e.g., [10], [25], [27]). With the extracted vulnerable
and patched functions (normalized with removing comments,
tabs, linefeed, and whitespaces, which are easy to change but
do not affect program semantics), we created a hash index to
be used for vulnerability detection. Here, three mechanisms
can be performed for creating the hash index: generating hash
values for (1) exact matching, (2) abstract matching, and (3)
similarity matching.
(1) Hash for exact matching: A hash value extracted from

the normalized function body of the original function.
If the target program contains the same functions (i.e.,
same characters) with a vulnerable function, it can be
detected.

(2) Hash for abstract matching: A hash value extracted
from the normalized function body of the abstracted
function (every occurrence of the parameter, variable,
and data types replace symbols [10]). Even if the target
function slightly changes with the parameters, variables,
and data types, the function can be detected.

(3) Hash for similarity matching: A hash value that can be
used for similarity comparisons. If the target program
contains the similar functions with a vulnerable func-
tion, it can be detected using this type of hash value
(it can be processed using locality sensitive hashing
algorithms).

When hash values of vulnerable and patched functions
are generated through the aforementioned processes, security
patches collected by xVDB can be easily utilized for vulner-
ability detection.

Survey of the CVE patch distribution. To know the status
of the CVE patch distribution, we conducted two additional
experiments: (1) the distribution of OSS and its patches
for the affected software, and (2) the proportion of CVE
vulnerabilities that can be covered by our methods.

To represent the distribution of OSS and the corresponding
patches in NVD, we examined 220 affected software that
reported more than 100 CVE. With 220 affected software,
we classified them into two groups: OSS and commercial
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software. To determine which software is OSS, we consid-
ered two criteria: (1) the case that can be extracted reposi-
tory URLs from the NVD references and (2) the case that
can extract repository URLs from external references (e.g.,
Wikipedia [24], vendor website, and repositories). While the
first criteria can be automatically identified, the cases of the
second criteria were manually checked because they cannot
be easily automated. Note that we considered software whose
source codes are fully opened as the OSS, and a partially-
open software was used as a commercial software. With these
results, we measured the total number of CVE.

(b) Depending on the number of CVEs(a) Depending on the number of software

Commercial
Software

59%
41%
OSS

11%

30%

7,941 21,596 

3,836 

3,359 

2,612 

(c) Proportion of CVEs in OSS covered by our approach

CVEs with direct link (13% of the total)

CVEs with indirect link (11% of the total)

CVEs with invisible link (9% of the total) 

covered uncovered

Commercial
Software

OSS

58%
42%

Criteria (1)

Criteria (2)

FIGURE 20: Status of the CVE patch distribution: (a) and
(b) show the distribution of OSS and its patches for the
affected software, and (c) depicts the proportion of vulner-
abilities that can be covered by our methods.

Among the 220 software, we confirmed that 91 (i.e., 41%
of the total) were OSS; 67 software (i.e., 30% of the total)
were detected by the first criteria, and we manually identified
24 software (i.e., 11% of the total) as open source from exter-
nal references (see Figure 20 (a)). The cumulative number of
CVE vulnerabilities reported by these 91 OSS projects was
29,537 (42% of all CVE vulnerabilities reported by the 220
affected software programs).

We targeted OSS to collect security patches because the
vulnerabilities related to commercial software and hardware
tend not to disclose their security patches. In addition, even in
the case of OSS vulnerabilities, there are still many vulner-
abilities that do not disclose security patches. Nevertheless,
our approach could cover 7,941 CVE (27%) vulnerabilities
among the 29,537 CVE vulnerabilities reported by the 91
OSS projects. In particular, the direct link collection method
covered 3,836 CVE patches (13%), the indirect link collec-
tion method collected 3,359 CVE patches (11%), and the
invisible link collection method gathered 2,612 CVE patches
(9%). This is clearly the result of collecting more security
patches compared to the existing approaches, and once again,
this emphasizes the importance of collecting indirect and
invisible patch links.

We failed to collect the remaining 21,596 CVE patches
(73%) because they did not exhibit any hidden connectivity

(defined in this paper) between the CVE info page and the
CVE patch page. Instead of releasing security patches, their
CVE info pages mainly suggest resolving vulnerabilities
through OSS version updates. Since more and more security
patches are being provided through direct links, the number
of patches our approach can collect will also gradually in-
crease. Nevertheless, developers need to provide a security
patch at the time of reporting a vulnerability, so that other
developers or security analysts can more clearly understand
the cause and solution of the vulnerability.

VII. CONCLUSION
As cybersecurity attacks aimed at OSS have exponentially
grown, the need for a large-scale vulnerability database,
which is effective in detecting, is also growing. In response,
we constructed a large-scale patch database for known vul-
nerabilities, called xVDB. Our experimental results affirmed
that our approach has a much higher coverage than existing
techniques in terms of collecting security patches, as it can
collect security patches at least four times more than those
collected in existing approaches.

xVDB can be used to support vulnerability detection. The
security patches collected in xVDB can be used to detect
vulnerable code clones contained in real-world software,
and this vulnerability detection approach has been serviced
since 2016 through the IoTcube platform. Equipped with the
patch information provided by xVDB, developers can ad-
dress potential threats caused by propagated vulnerabilities,
rendering a safe software ecosystem.

As a future extension, we will devise a patch collection
method for security patches that do not have hidden connec-
tivities between the CVE info page and the CVE patch page.
For example, a patch for fixing a CVE vulnerability may not
contain any hints (e.g., CVE ID) about the vulnerability in its
commit message. We are considering a method for collecting
security patches based on the description information of the
CVE info page.
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