
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

CIRCUIT: A JavaScript Memory
Heap-Based Approach for Precisely
Detecting Cryptojacking Websites
HYUNJI HONG†, SEUNGHOON WOO†, SUNGHAN PARK†, JEONGWOOK LEE,
AND HEEJO LEE
Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
(e-mail: {hyunji_hong, seunghoonwoo, sunghan-park, wjddnrdl65, heejo}@korea.ac.kr)
†: These authors contributed equally to this work.

Corresponding author: Heejo Lee (e-mail: heejo@korea.ac.kr).

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.2019-0-01697 Development of Automated Vulnerability Discovery Technologies for Blockchain Platform
Security, No.2022-0-00277 Development of SBOM Technologies for Securing Software Supply Chains, No.2022-0-01198 Convergence
Security Core Talent Training Business, and No.IITP-2022-2020-0-01819 ICT Creative Consilience program).

ABSTRACT Cryptojacking is often used by attackers as a means of gaining profits by exploiting users’
resources without their consent, despite the anticipated positive effect of browser-based cryptomining. Pre-
vious approaches have attempted to detect cryptojacking websites, but they have the following limitations:
(1) they failed to detect several cryptojacking websites either because of their evasion techniques or because
they cannot detect JavaScript-based cryptojacking and (2) they yielded several false alarms by focusing only
on limited characteristics of cryptojacking, such as counting computer resources. In this paper, we propose
CIRCUIT, a precise approach for detecting cryptojacking websites. We primarily focuse on the JavaScript
memory heap, which is resilient to script code obfuscation and provides information about the objects
declared in the script code and their reference relations. We then extract a reference flow that can represent
the script code behavior of the website from the JavaScript memory heap. Hence, CIRCUIT determines
that a website is running cryptojacking if it contains a reference flow for cryptojacking. In our experiments,
we found 1,813 real-world cryptojacking websites among 300K popular websites. Moreover, we provided
new insights into cryptojacking by modeling the identified evasion techniques and considering the fact that
characteristics of cryptojacking websites now appear on normal websites as well.

INDEX TERMS Browser Security; Web Security; Cryptojacking

I. INTRODUCTION

Cryptojacking is a well-known cyberattack that applies vic-
tims’ computer resources (e.g., CPU and memory) for cryp-
tocurrency mining without the consent of the victims. The
cryptocurrency that is generated during the mining pro-
cess can be hijacked by attackers for profit. Previously,
cryptojacking was executed by inducing users to execute
malicious programs, similar to existing malicious attacks,
e.g., trojan and ransomware attacks. Recently, however, the
more threatening cryptojacking has appeared, which has been
implemented based on the modern web environment, and
the malicious script code of cryptojacking is automatically
executed on the client side when a user visits a cryptojacking
website.

Hence, detecting cryptojacking websites and filtering them
out in the web environment is crucial for protecting user
resources. However, the precise detection of cryptojacking
websites is complex and prone to errors. As script code ob-
fuscation techniques are frequently applied to cryptojacking
websites, it is increasingly growing more challenging to de-
tect cryptojacking based on the static analysis approach. Fur-
thermore, the cryptojacking websites’ characteristics (e.g.,
running numerous threads or consuming high resources of
victims’ computers) now appear on various normal websites
(e.g., live-streaming websites), thereby complicating the pre-
cise detection of cryptojacking websites.

Existing cryptojacking detection approaches mainly use
the following four techniques: blacklisting-based [14], [16],
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[25], [37], [42], [45], resource monitoring-based [38], [40],
thread count-based [38], [41], and WebAssembly-based tech-
niques [35], [42]. Although they all provide insights into
detecting cryptojacking, they have limitations in terms of
the precise detection of cryptojacking. Blacklisting-based
approaches stored the characteristics appearing on crypto-
jacking websites as blacklists (e.g., domain, script code, and
external server link) and determined a website that contains
the stored blacklists as cryptojacking websites. However,
these approaches failed to detect several cryptojacking web-
sites because they can be easily bypassed by simple evasion
techniques, such as script code obfuscation or a domain
generation algorithm (DGA), which steadily changes the
external server link. By contrast, resource monitoring-based
and thread count-based approaches, which focus on cryp-
tojacking requiring several computer resources and threads,
respectively, yield numerous false positives because even
recent normal websites, require several threads and high
computer resource consumption (e.g., web-game or stream-
ing sites). Last, the WebAssembly-based approaches exhibit
low detection coverage because they cannot detect the most
common JavaScript-based cryptojacking websites.

Our approach. In this study, we propose CIRCUIT, a
precise approach for detecting cryptojacking websites. We
define a unit called a reference flow, which represents cryp-
tojacking behavior and is robust against JavaScript code
obfuscation, and use it to detect cryptojacking websites.

We mainly focus on the JavaScript memory heap of the
websites. The memory heap reveals the declared objects in
the website’s script code and their reference relations. To
execute cryptojacking, a website should run multiple threads
using web workers (see Section II-A). Hence, CIRCUIT
extracts the behavior of each thread separately from the
heap graph, which is called the reference flow. Subsequently,
CIRCUIT extracts all reference flows from known cryp-
tojacking websites, stores them as the signature of cryp-
tojacking, and compares all reference flows of the target
website with the stored cryptojacking signatures. If at least
one reference flow of the target website is similar to the
cryptojacking signature, then the website is identified as a
cryptojacking website. As we focused on the memory heap,
CIRCUIT can robustly detect cryptojacking websites even
with an obfuscated script code. In addition, CIRCUIT can
detect cryptojacking websites more precisely than existing
approaches by detecting the reference flow containing the
actual cryptojacking behavior rather than simply focusing
on the characteristics of several threads or high resource
consumption, commonly appearing on normal websites.

Evaluation. For the experiment, we collected over 300K
real-world websites, including the Alexa top 100K and Ma-
jestic top 200K websites. Among them, CIRCUIT detected
1,813 cryptojacking websites with cryptojacking behaviors,
most of which used evasion techniques to avoid crypto-
jacking detection. CIRCUIT responded flexibly to evasion
techniques in four categories based on the evasion techniques

modeled in the experiment. Furthermore, by analyzing the
distribution of the number of threads of the collected web-
sites, we demonstrated the limitations of the existing resource
monitoring and thread-count-based approaches and proved
the efficiency of CIRCUIT from the perspective of precise
cryptojacking detection (see Section IV).

Contributions. We summarize our contributions below:
• We propose CIRCUIT, a precise approach for detecting

cryptojacking websites based on the JavaScript memory
heap. CIRCUIT is robust to evasion techniques applied
to cryptojacking websites to avoid cryptojacking detec-
tion.

• Although evasion techniques were applied to most of the
identified cryptojacking websites, CIRCUIT succeeded
in detecting 1,813 cryptojacking websites from 300K
real-world websites.

• Modeling evasion techniques to avoid cryptojacking
detection allows us to provide new insights into cryp-
tojacking as behaviors previously associated with cryp-
tojacking now appear widely on normal websites.

II. BACKGROUND AND RELATED WORK
This section describes the background knowledge related to
cryptojacking (Section II-A) and introduces related works on
cryptojacking detection (Section II-B).

A. BACKGROUND AND TERMINOLOGY
1) CRYPTOCURRENCY MINING
Cryptocurrency is a digital asset designed to function as a
medium of exchange. Cryptocurrency mining (cryptomining)
is the process of validating a cryptocurrency transactions. To
gain cryptocurrencies (e.g., Bitcoin and Ethereum), Proof-of-
Work (PoW) is performed, which is a blockchain consensus
mechanism. In a nutshell, peers (i.e., miners) in the PoW
blockchain network solve complex mathematical problems
with taxing computational power. The fixed time (e.g., 10
minutes for Bitcoin) rewards (i.e., cryptocurrency) a peer
who wins the race and mines the block. Mining is compu-
tationally taxing because only the first miner who solves the
problem is rewarded. To strengthen the probability of find-
ing a block, miners combine their computational resources
through public mining pools.

2) CRYPTOJACKING
Cryptojacking refers to the malicious behavior that inter-
cepts all profits arising cryptomining by using the visi-
tors’ resources in a web environment, without their consent.
When visiting a website injected with cryptomining, a user’s
computational resources are hijacked to mine cryptocur-
rency. Specifically, the web technology evolution, such as
JavaScript (JS) and WebAssembly (Wasm), makes it easy
to access users’ resources and leverage them in the mining
process; simply inserting the JavaScript code that supports
mining services into the web page can infect website visitors.
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Moreover, since the cryptojacking code executes automati-
cally and works as a background on the webpage, visitors
hardly realize that they are infected. Figure 1 shows the
workflow of the cryptojacking process.

Website
Cryptojacking code

Load

Mining Script

Mining Pool

Web socket

communication
Attacker

Authentication

Revenue

Site key

(Wallet ID)

FIGURE 1: Overview of cryptojacking process.

Cryptojacking is executed in the following three steps:

1) Executing cryptojacking code on a website. When
a user visits a website, the web browser automatically
loads the website code files (e.g., necessary libraries and
external resources) and executes them. As the
cryptocurrency script code was previously inserted in
the website, it is also executed in this step.

2) Participating in a mining pool. The executed cryp-
tojacking code authenticates the visitor’s PC by using
a predefined mining pool. Thereafter, the visitor (i.e.,
victim) is forced to participate in the mining pool,
organized to mine cryptocurrency.

3) Mining and gaining profits. The computer resources
of the victim’s PC mine the cryptocurrency, and then
the mined cryptocurrency is sent to the attacker’s digital
wallet address, which was previously defined in the
cryptojacking code of the website.

Unlike traditional malware, cryptojacking exploits only
the victim’s computer resources; the victim has a minor
infection symptoms, such as slow computer performance or
an increase in power consumption, making it difficult to
recognize cryptojacking. Furthermore, since cryptojacking
runs in a web environment, its execution is less restrictive,
and various devices and operating systems may be exposed to
cryptojacking. Therefore, cryptojacking has attracted atten-
tion as a stable and continuous means of profit for attackers.

3) JAVASCRIPT ENGINE
The workflow of the JavaScript engine, where the cryptojack-
ing code is executed, is shown in Figure 2. The JavaScript
engine first analyzes the syntax errors of the script code, and
if there are no errors, it starts reading the script code from
top to bottom and converts the code into a machine language.
To interpret and execute JavaScript code, two large areas are
required: the memory heap and call stack [3], [19], [22].

• Memory heap. When variables and objects are declared
in the JavaScript code, the JavaScript engine allocates
memory to them and stores the allocated memory infor-
mation in the memory heap.

• Call stack. When the JavaScript engine finds an exe-
cutable syntax in the script code, such as a function call,
it adds the syntax into the call stack and executes the
stored syntax one by one according to the last-in-first-
out (LIFO) format.

Memory Heap

Event Loop: Asynchronous

: Synchronous 

JavaScript runtime engine

Call Stack

Task 1

Task 2

Web APIs

DOM Events

AJAX

Timer

Task Queue

Callback

1

Callback

2
…

…

Task 1

Task 2

FIGURE 2: The workflow of the JavaScript engine. The
JavaScript engine only handles one task at a time stored in
the call stack, i.e., single-thread process.

If an asynchronous function is executed (e.g., a callback
function), the JavaScript engine calls the web API, which
is provided by the browser. The web API stores an asyn-
chronously executed function in the task queue. Thereafter,
the event loop [15] checks the status of the call stack and
task queue, and when the call stack becomes empty, the
first callback of the task queue is put into the call stack and
executed.

4) WEB WORKER
JavaScript has become one of the most popular languages [9],
[10], [33], and the cryptojacking that leverages it has also
been on the rise recently [5]. In JavaScript, web workers en-
able multi-threaded processing. Previously, JavaScript only
supported a single-thread process, meaning that JavaScript
could only process one task at a time. Therefore, when a task
was performed, the following task waited until the previous
task was completed. If websites had heavy tasks that could
not afford a single thread, they became unresponsive due to
the overhead. To address this problem, a web worker [30],
[31] was introduced to support a multithread process in
JavaScript. As cryptomining requires a lot of resources to
recursively check the validity of several blocks connected
to a cryptocurrency network (i.e., a heavy task), it is indis-
pensable that browser-based cryptomining is implemented
through a multi-thread process. Consequently, the appear-
ance of web workers has a significant influence on making
cryptojacking more active.

5) DATA TYPES IN JAVASCRIPT
In JavaScript, data types belong to two categories: primitive
value and reference value [6].

• Primitive value: When primitive values are assigned
to variables, they are stored in fixed sizes in the mem-
ory; therefore, they are stored on the call stack along
with the actual values. JavaScript provides the follow-
ing types of primitive values called wrapper objects:
number, string, boolean, null, undefined,
and symbol [1].
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• Reference value: When the variables are not assigned
to wrapper objects, they are used as reference values.
The size of the reference value is not fixed; therefore,
it is stored in the heap along with its location; variables
only have memory addresses instead of values for data.
All data types, except wrapper objects, are contained in
the reference variables (e.g., array, object, and function).

As an example of these two data types, Listing 1 presents
the difference between primitive and reference values.

Listing 1: Example code showing the difference between primi-
tive and reference values.

1 //Case (1): primitive value
2 var a = 100;
3 var b = a;
4 a = 99;
5 console.log(b); //100
6
7 //Case (2): reference value
8 var a = { num : 100 };
9 var b = a;

10 a.num = 99;
11 console.log (b); //99

Case (1) in Listing 1 presents the case when a primitive
variable is copied to a certain variable. Since the value of
the variable is copied, variable b outputs the previous value
of variable a. By contrast, case (2) in Listing 1 presents the
case when a reference variable is copied to a certain variable.
As the reference value stores the address in the memory,
variable b is changed along with the modification of variable
a because values with the same memory address always refer
to the same data; this allocation of memory addresses to
access data is referred to as a reference in JavaScript.

6) PROTOTYPE-BASED LANGUAGE IN JAVASCRIPT
To understand code reuse in JavaScript, we introduce
the concept of prototype-based programming language in
JavaScript. As explained in Section II-A5, most variables are
objects, except for those assigned a primitive type. Every
object in JavaScript has a property that has keys and values,
and this property is called a prototype [21], [26]. When
creating an object, it can inherit methods and properties
from a parent object in a template format; this is called the
prototype chain [20] (see Listing 2).

Listing 2: An example of JavaScript prototype chains.
1 var foo = {foo : "foo"};
2 var a = Object.create(foo);
3 var array = [];
4 var func = function () {
5 console.log("foo");
6 }
7 Window instanceof Object // True
8 /* "Window" refers to the page itself where the script
9 is currently running */

Listing 2 presents an instance of the JavaScript code
used to describe the prototype chain, and Table 1 lists
the prototype chains for the corresponding code. As the
basic type of JavaScript is the object, all elements, such
as functions and arrays, are linked to a top-level object,
Object.prototype. The top-level object has null as its
prototype; therefore, the prototype chain ends.

TABLE 1: Prototype chains for Listing 2.

#Line Prototype Chain
Line #1 foo → Object.prototype → null
Line #2 a → foo → Object.prototype → null
Line #3 array → Array.prototype → Object.prototype → null

Lines #4 - #6 func → Function.prototype → Object.prototype → null

B. RELATED WORK

Several existing approaches detect and prevent threats caused
by cryptojacking. We reviewed four types of existing ap-
proaches: (1) blacklisting-based, (2) resource monitoring-
based, (3) thread count-based, and (4) WebAssembly-based
approaches.

(1) Blacklisting-based approach. These approaches store
elements with unique cryptojacking characteristics (e.g., ex-
ternal resources links and script codes) as keywords in the
blacklist and use them to detect cryptojacking [14], [16],
[25], [37], [42], [45]. If the stored keywords are detected
on a website (e.g., if the domain of a website is the same
as a blacklisted domain), the website is considered as a
cryptojacking website. This approach is useful for detecting
cryptojacking when an attacker fetches and abuses known
cryptojacking code.

(2) Resource monitoring-based approach. A resource
monitoring approach is based on the fact that cryptojacking
is a resource-intensive task [38], [40]. This method detects a
website as a cryptojacking website if the computer resources
(e.g., CPU usage) exceed a predetermined threshold when
visiting the website. In particular, this approach has been
highlighted as a new detection mechanism because it is
not affected by script code obfuscation and is more conve-
nient than a blacklisting-based approach requiring continu-
ous management of blacklists.

(3) Thread count-based approach. As cryptojacking re-
quires continuous mining, a thread with a separate execution
space was created to proceed with mining. Unlike a normal
website, the number of threads on a cryptojacking website is
proportional to profitability [38], [41]. Consequently, several
approaches have found a difference in the number of threads
between cryptojacking and normal websites, and proposed
methods can be utilized for cryptojacking detection [41].
This approach detects cryptojacking more flexibly than
blacklisting-based or resource-monitoring-based approaches.

(4) WebAssembly-based approach. Wasm is a binary in-
struction format that can run in modern web browsers along
with JavaScript [32]. It provides near-native performance
for web applications, and any language (e.g., C, C++, and
Rust) can be compiled. Owing to the advantages of Wasm,
an increasing number of attackers are using Wasm to em-
ploy cryptojacking websites [44]. In light of this, several
approaches [35], [42] targeted cryptojacking websites based
on Wasm, and proposed detection methods using static and
dynamic features related to Wasm (e.g., by counting Wasm
instructions).
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Limitations of existing approaches. Existing approaches
provide insights into detecting cryptojacking websites; how-
ever, we confirmed that each has limitations in precisely
detecting cryptojacking websites.

Blacklisting-based approaches have two main limitations.
As this approach is solely dependent on the stored keywords,
keywords related to cryptojacking must be periodically col-
lected; thus, when new cryptojacking appears, it is impos-
sible to detect until the relevant keyword is stored in the
blacklist. Furthermore, attackers can easily bypass blacklist-
based detection by creating keywords that are not included
in the blacklist using obfuscation or DGA. Hong et al. [38]
and Konoth et al. [42] systematically analyzed cryptojacking.
Specifically, Hong et al. [38] determined the life cycle of
cryptojacking websites and the proper blacklist updating
period, and proved that it was not enough to detect crypto-
jacking by relying only on the blacklist. By contrast, resource
monitoring-based approaches have a false-positive problem.
Recently, it is more common to provide extensive work to the
web environment (e.g., real-time video streaming) that shows
high resource usage. Therefore, simply relying on resource
usage monitoring can result in normal websites with high
resource usage being mistaken as cryptojacking websites.
In addition, thread count-based approaches cannot precisely
detect cryptojacking because normal websites using multiple
threads have appeared. Finally, Wasm-based approaches ex-
hibited low detection coverage; even if several websites that
employed Wasm were malicious, only 0.16% of the websites
used Wasm among the Alexa Top 1 million websites [44].
As the proportion of Wasm-based websites is insignificant,
JavaScript-based cryptojacking websites should be included
in the scope of detection.

III. DESIGN OF CIRCUIT
This section introduces the CIRCUIT methodology, which
focuses on detecting JavaScript-based cryptojacking web-
sites and is robust against JavaScript code obfuscation. Fig-
ure 3 shows the high-level workflow of CIRCUIT.

Mining sites  
script code

Heap graph 
generation

Reference flow 
extraction Reference flows

INPUT

Websites  
script code

INPUT

Reference flows

OUTPUT

Cryptojacking sites

Compare

P1. Signature generation P2. Cryptojacking detection

Vulnerable 
signatures

Heap graph 
generation

Reference flow 
extraction

FIGURE 3: High-level workflow of CIRCUIT.

A. OVERVIEW
CIRCUIT comprises the following two phases: (1) P1 for
generating signatures and (2) P2 for detecting cryptojacking.
In P1, CIRCUIT first generates a heap graph that shows
the behavior of the script code running on the website to
detect cryptojacking, even if its script codes are obfuscated.

CIRCUIT then extracts reference flows, that refer to the refer-
ence relations between objects in JavaScript. As the reference
flows can denote the call flow of objects, we decided that
the reference flows would represent cryptojacking behaviors.
Therefore, CIRCUIT stores the reference flows of known
cryptojacking websites as cryptojacking signatures. In P2,
CIRCUIT compares the reference flows of the target web-
sites with the signatures. If the reference flow of the target
website resembles that of cryptojacking websites, CIRCUIT
identifies the target website as a cryptojacking website.

Key idea. CIRCUIT utilizes the fact that script code ob-
fuscation does not directly affect the information stored in
memory, and web threads are stored in the memory area
as objects. Thus, it is very flexible for indistinguishable
script codes and can be analyzed by classifying web threads
individually. If a mining-related thread is discovered on a
website, it is identified as a cryptojacking site.

To precisely detect cryptojacking sites, we leveraged two
key observations as follows:

1) Form of cryptojacking code reuse. Cryptojacking
source code is generally provided by vendors through
external links, and attackers utilize it in the form of
third-party libraries [4], [36], [38].

2) Distinguishable behaviors of cryptojacking. To gain
benefits, cryptojacking should perform its own mining
behaviors, distinguishable from normal websites, e.g.,
as joining a mining pool → mining cryptocurrency →
sending rewards to attackers.

These two observations provide the following intuition:
since cryptojacking is utilized in a third-party library form
(i.e., cryptojacking families), the JavaScript call stack and
memory heap are comparable among websites using the
same cryptojacking [41]. Furthermore, each cryptojacking
contains its behavior; therefore, we can use the behavior
as the signature of cryptojacking and detect cryptojacking
websites by analyzing whether a particular website contains
the same or similar behaviors of cryptojacking.

B. SIGNATURE GENERATION (P1)
This section introduces the methodology for heap graph
generation (Section III-B1) and reference flow extraction
(Section III-B2).

1) HEAP GRAPH GENERATION
First, CIRCUIT generates a JavaScript memory heap graph
from a website. A node in the graph is a set of all the objects
in the memory heap of the JavaScript engine, where the
object includes special types, such as wrapper objects and
window objects. An edge in a graph is a set of values that
expresses the reference relation between two objects. In other
words, it is a set of values in which a memory address value is
allocated to access the corresponding memory address (e.g.,
variable names).
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Let us consider the following code snippet as the running
example.

Listing 3: Example of a JavaScript code snippet to illustrate the
heap graph generation.

1 Class Foo {
2 constructor (value) {
3 this.key = value;
4 }
5 }
6 var a = var Foo("foo");

The obfuscated code for Listing 3 is shown in Figure 4
(a). Even if Listing 3 contains only variable declaration
statements, the obfuscated code of Listing 3 is difficult to
understand. However, the memory heap contains the declared
object and variable names (see Figure 4 (b)); therefore, we
can identify them via the memory heap. Thus, we only
consider the memory heap of JavaScript.

To obtain the memory heap information from a website,
we take a snapshot of the website when all contents of the
document (e.g., images, scripts, and CSS) are loaded (by load
event [34]). As JavaScript is an interpreted language, mem-
ory is steadily allocated and deallocated while a website is
running. Specifically, the allocated memory is automatically
deallocated when the variables and objects corresponding to
the memory in the source code are no longer required because
of garbage collection (GC) [24]. Fortunately, cryptojacking
has a pattern of executing repetitive tasks within a website
for mining, and thus, the allocated memory is not deallocated
before a user leaves the website; there is no loss of memory
information through GC. Therefore, we decide to take a
snapshot of the website with all contents of the document
loaded. To extract the memory heap of the websites, we
can easily obtain the objects declared in the website script
code and their reference relations by taking heap snapshots
using the JavaScript engine. For instance, the V8 JavaScript
engine [29] provides data in JSON format, and object and
reference information can be obtained by parsing the corre-
sponding JSON.

Next, as described in Section II-A6, if objects with refer-
ence relations are connected, a heap graph is constructed. In
the running example (Listing 3), “foo” exists in the string
node because it belongs to the wrapper object as a
string type of data. As the variable “key” refers to the
memory address where the value of “foo” is stored, it is
converted to an edge and connects “Foo”. The variable “a”,
created by the constructor function of class “Foo” is a value
that has the memory address for the created “Foo” object,
and therefore “a” is converted into an edge that connects
the node indicating the web page itself and the “Foo” node.
Thus, to access the value “foo” from a web page, we first
access “Foo” node by “a” edge which has the memory
address value of “Foo”, and then access “foo” node by a key
edge that also has the memory address of “foo”. Figure 4
depicts the overall flow where Listing 3 is converted into a
heap graph.

The generated heap graph can express the reference rela-
tions between the objects declared on the website; therefore,

var 0x3379=['key','foo'];(function(_0x355095,_0x337962){var_0x18bf6c=function(_0x1
14e0e){while(--_0x114e0e){_0x355095['push'](_0x355095['shift']());}};_0x18bf
6c(++_0x337962);}(_0x3379,0x144));var_0x18bf=function(_0x355095,_0x337962){_0x355095=_0x355095
0x0;var_0x18bf6c=_0x3379[_0x355095];return_0x18bf6c;};classFoo{constructor(_0x39912a){this[_0x
18bf('0x0')]=_0x39912a;}}var a=new Foo(_0x18bf('0x1'));

(a) Obfuscated JavaScript code

Memory heap

Call Stack

(b) JavaScript Engine

Allocated memory

Foo afoo key

…

Foo
key

foo

a

Objects Referencing value

(c) Heap graph

FIGURE 4: Overview of heap graph generation.

we can grasp the passing of all object flows to access a
particular object. Consequently, the heap graph can identify
and display declared variables or objects, even though the
script code of a website is obfuscated.

2) REFERENCE FLOW EXTRACTION
CIRCUIT extracts reference flows from the generated heap
graph. Reference flows are defined as the reference relations
between objects in JavaScript, which denote the call flows of
objects. We first reduce the searching space by focusing on
the existence of a multi-thread. As previously explained in
Section II-A4, running a multi-thread is an essential property
for cryptojacking. Consequently, to determine whether a
website runs multiple threads, we confirm whether a web
worker exists in the heap graph of the website. In general,
if a website runs multi-thread, the WebWorker object is
contained in the memory heap, as shown in Figure 5. Sub-
sequently, CIRCUIT first finds the WebWorker node in the
heap graph to determine whether the website runs multi-
thread, and thereafter CIRCUIT attempts to extract reference
flows from the heap graph.

Multi-thread heap graph

Object Referencing value

Execution contextExecution context

Single-thread heap graph

Reference flow

Thread #1

Thread #2

Web
Worker

Web
Worker

※ No WebWorker node appears

FIGURE 5: The illustration of the difference between a
single-thread heap graph and multi-thread heap graph, par-
ticularly based on the WebWorker nodes.

Since the WebWorker object is created through the con-
structor function on a website [30], [31], a value that refers
to the memory address of the WebWorker object must exist,
and this value remains as an unique path that can be accessed
for use on a website. To obtain a reference flow for each web
worker, CIRCUIT defines the execution context [2], which is
an environment for executing the JavaScript code as the start
node and WebWorker object as the end node.

Subsequently, we traverse the heap graph using the depth-
first search (DFS) and collect all the nodes and edges passing
between the execution context and WebWorker object as
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the reference flow of each web worker. In the reference flow,
information about the objects declared by the web worker and
the reference relations between various objects are revealed.
In other words, in the reference flow that directly executes
cryptojacking, the object and reference relation related to
the actual mining process are revealed. Thus, we employ the
reference flow to detect cryptojacking websites.

C. CRYPTOJACKING DETECTION (P2)
Next, CIRCUIT detects cryptojacking websites using the
extracted reference flows.

Signatures for cryptojacking websites. To identify
whether the extracted web worker’s reference flow contains
cryptojacking behavior, we first explain the cryptojacking
structure and how it is accessed and executed. The crypto-
mining script code has three areas: the head, body, and
tail. The head is a script code area for importing crypto-
jacking related resources (e.g., objects and variables) with an
external server link. The body is a code area that declares the
necessary functions and objects before the mining operation
is executed on a cryptojacking website. Finally, the tail is a
code area where an object is created for mininig on the client
side, and the mining is executed.

Listing 4: Script code of CoinIMP.
1 <script src="https://www.hostingcloud.racing/A8P2.js">
2 </script>
3
4 var a=[‘G8KsSsOpP8KU’, ‘fWoRw5DClEjCr ... HDrE4f’];
5 //The script code of the corresponding ‘A8P2.js’ file
6
7 <script>
8 var miner = new Client.Anonymous(‘<site-key>’);
9 miner.start();

10 </script>

For example, Listing 4 represents a real-world cryptojack-
ing code (i.e., CoinIMP). In this code snippet, lines #1
and #2 belong to the head, line #4 belongs to the body,
and lines #8 and #9 belong to the tail. As mentioned in
Section III-A, the cryptojacking code is mainly distributed
in a general third-party form and is executed through the
same script code from each cryptojacking vendor. There-
fore, if the websites utilize the same cryptojacking vendor,
the head, body, and tail of cryptojacking codes will
be similar. As the operations performed by cryptojacking,
particularly the mining operations performed on the body,
remain identifiable in the memory heap, we can use this
information to detect cryptojacking websites, irrespective of
code obfuscation.

Therefore, we collect the cryptomining script code pro-
vided by the cryptojacking vendors. To extract reference
flows from the collected cryptomining script code, we create
an arbitrary website to open a web server inside and embed
the collected script code. We then implement a cryptomining
website using the collected cryptomining script code by
referring to the provided usage document and storing the
heap information of the JavaScript engine created when the
website is executed. Subsequently, we generate the heap

graph from the JavaScript memory heap and then extract
the reference flows from each web worker. The extracted
reference flows for each vendor are indexed by the name
of each vendor. Figure 6 shows examples of the extracted
reference flows from seven known cryptojacking websites.
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FIGURE 6: Example of extracted reference flows from
known cryptojacking websites.

Detecting cryptojacking websites. Finally, CIRCUIT de-
tects cryptojacking websites using extracted cryptomining
reference flows. To confirm that a target website contains
cryptojacking, we extract all reference flows from the target
website and compare every extracted reference flow to the
indexed cryptomining reference flows. Here, we employ an
edit distance algorithm [17] and calculate the edit distance
between all the reference flows obtained from the target web-
site and all the indexed cryptomining reference flows. If any
pair shows an edit distance below the predefined threshold
(we set 5 as the threshold; see Section IV-A), CIRCUIT
identifies the target website as a cryptojacking website. The
algorithm that detects cryptojacking websites is presented in
Algorithm (1).

IV. EVALUATIONS AND FINDINGS

In this section, we evaluate CIRCUIT. We first evaluated the
cryptojacking detection results of CIRCUIT using popular
real-world websites. CIRCUIT was tested for its coping
ability with techniques used to evade cryptojacking detec-
tion (e.g., obfuscation). Finally, we introduced findings on
the detected cryptojacking websites. We ran CIRCUIT on
a machine with Ubuntu 18.04 LTS, 3.8 GHz AMD Ryzen
processor, 32 GB RAM, and 1 TB SSD.

Dataset collection. The experiment collected real-world
websites from the dataset. Specifically, we decided to collect

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204814

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Hong, Woo, & Park et al.: CIRCUIT: A JavaScript Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

Algorithm 1: Algorithm for detecting cryptojacking sites.
Input: K, T
// K: known cryptojacking websites, T: a target
website
Output: C
// C: a list of cryptojacking injected websites

1 procedure DETECTINGCRYPTOJACKING
(
K, T

)
2 C← ∅
3 SK← ExtractingSignature(K)

// A unique set of reference flows of K
4 for Ti in T do
5 ST← ExtractingSignature(Ti)

// A unique set of reference flows of T
6 if ST == false then
7 continue

8 for t in ST do
9 for k in SK do

10 if IsSimilar(t, k) then
// Determining Ti as the
cryptojacking website

11 C.append(Ti)

12 return C

13 procedure EXTRACTINGSIGNATURE
(
S
)

14 if IsWebWorker(S) then
15 R← ∅ // R: Reference flows
16 H← takeHeapSnapshot(S)

// Take a heap snapshot for website
17 startNode, workerNode, NodeEdgeList←

MemoryHeapGeneration(heap)
// Extract reference flow by searching the
nodes with DFS

18 R.append(extractReferenceFlows(startNode,
workerNode, NodeEdgeList))

19 return R

20 else
21 return false

popular websites that have greater impacts on several users,
and then confirmed the existence of cryptojacking websites.
We collected 300,000 websites listed in Amazon’s Alexa top
website service [7] and Majestic [28], which provide the
world’s most popular website list for free, and then gathered
top websites in both lists to confirm the distribution of cryp-
tojacking in the overall Internet environment. Furthermore, to
identify the website service field where cryptojacking is dis-
tributed, we also collected an additional Alexa category top
service [8] that indexes websites by category. We collected
a list of 6,000 websites, each with 500 of the most popular
rankings for 12 categories. Therefore, we collected 306,000
websites as our dataset to evaluate CIRCUIT (see Table 2).

Memory heap collection. We developed a crawler that
stores the memory heap area of a visited website using
the remote interface [13] and puppeteer [27] functions of
the Chrome browser [12]. This crawler visited the collected
306,000 websites, and after waiting for the website content
to finish loading (i.e., load event), it extracted a snapshot

TABLE 2: Summary of the collected websites for our exper-
iment.

Category #Total websites
Alexa top 100K websites 100,000
Majestic top 200K websites 200,000
Alexa category top websites

Adult 500
Arts 500

Business 500
Computers 500

Games 500
Health 500
Home 500

Kids and Teens 500
News 500

Recreation 500
Reference 500
Regional 500

Total 306,000

of the memory heap area of the JavaScript engine. Here, if
the connection time of the website exceeds 30,000 ms or the
website cannot be accessed from the domain name system
(DNS) server, the crawler ignores the website. Therefore, our
crawler collected memory heap areas from 204,773 websites
to evaluate CIRCUIT, and the results are summarized in
Table 3.

TABLE 3: Summary of the collected memory heap from the
website dataset.

Category #Websites #Heap extracted† Collection date
Alexa top 100K 100,000 82,081 June 28, 2022
Majestic top 200K 200,000 117,833 June 12, 2022
Alexa category top 6,000 4,859 May 31, 2022

Total 306,000 204,773 N/A

†: The number of websites from which the memory heap was successfully
extracted.

A. DETECTION OF CRYPTOJACKING IN THE
REAL-WORLD WEBSITES

Methodology. First, we extracted seven reference flows
from the seven known cryptojacking websites as signatures
for cryptojacking behaviors (see Figure 6). Thereafter, from
the 204,733 heap graphs generated for common websites
(Table 3), we extracted 49,791 reference flows related to
web workers. The number of reference flows related to
web workers is significantly below the number of heap
graphs because we ignored websites that only executed
a single-thread (see Section III). We then compared the
extracted reference flows to the stored cryptojacking sig-
natures by employing the Python library to obtain the
edit distance between the two reference flows. Specifi-
cally, we used the networkx library, which contains the
“similarity.optimize_graph_edit_distance”
function that measures the difference between two graphs
as an integer greater than or equal to zero; if the distance
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is zero, the two input graphs are the same. Hence, we set
the threshold to 5 (defined in Section III-C) and determined
two graphs (i.e., two reference flows) with an edit distance
of below 5 as similar. We decided that the target website that
contains a similar reference flow to cryptojacking signatures
was the cryptojacking website.

Majestic top 200K
(1,802 websites)

Alexa top 100K
(221 websites)

Alexa category top
(47 websites)

FIGURE 7: Distribution of the cryptojacking websites
detected by CIRCUIT.

Detection results. In our experiments, we found that 2,423
reference flows from 1,813 websites are similar to crypto-
jacking signatures. Figure 7 presents the distribution of cryp-
tojacking websites detected by CIRCUIT; note that several
websites belong to multiple groups. From the results, we
confirmed the following three observations.

1) Most detected cryptojacking websites (1,802 websites)
belong to the Majestic top 200K group.

2) When comparing the results of Alexa top 100K and
Majestic top 200K, less popular websites (top 101K to
200K) may contain more cryptojacking behaviors than
very popular ones (top 1 to 100K).

3) Cryptojacking websites were hardly discovered in the
Alexa category top groups (top 500 per each category).

Since all detected websites contain a reference flow sim-
ilar to that of cryptojacking websites, the detected websites
contain the cryptojacking behaviors, either potentially or
directly. Manually inspecting all the detected websites is an
error-prone and burdensome task, and thus, we randomly
selected 100 websites (6%) and manually checked whether
they performed cryptojacking. To verify our results, as most
of cryptojacking websites leverage evasion techniques to
hide cryptojacking behaviors, we checked the CPU usage of
websites, an evaluation method that was used in the existing
approaches [35], [38], [42]; since we have already confirmed
that the websites detected by CIRCUIT contain cryptojack-
ing signatures, we decided that it was valid to verify them
by further investigating the CPU usage. As a result, all the
100 selected websites exhibited over 55% CPU usage; 25 out
of the 100 websites showed over 90% CPU usage. The CPU
usage of the verified websites was significantly higher than
that of the normal websites; the normal websites exhibited
below 1% CPU usage on average. This result affirmed that

CIRCUIT successfully detected malicious websites that were
actually running cryptojacking behaviors.

The main advantage of CIRCUIT is that it has reported
fewer false positives. In existing approaches (e.g., Out-
guard [41]), for example, if the number of threads on a
website is greater than the threshold, or if the resource
consumption is higher than the threshold, all of them are
determined as cryptojacking websites. Although these web-
sites may use the resources of visitors, some of them ask for
the consent of the visitor, and most of them have a lower
influence on visitors than cryptojacking websites in terms of
resource consumption. Thus, we can argue that our result is
more precise and compact because CIRCUIT detects only
cryptojacking websites that clearly contain the cryptojacking
behavior.

B. EVASION TECHNIQUES

As cryptojacking websites were blocked by the emer-
gence of several applications, such as Dr.Mine [16] and
MinerBlock [25], attackers started hiding the mining script
code to avoid cryptojacking detection. Therefore, we gath-
ered the evasion techniques found in our experiment and
summarized them as the following four evasion models (E1
to E4). Figure 8 shows the heap graphs for each evasion
technique.

E1: Obfuscating the script code. Obfuscation is obfuscat-
ing and compressing cryptojacking script codes on a web-
site, or to hide notable keywords in the script code using
the CharCode or eval function. This is one of the rep-
resentative evasion techniques used to avoid cryptojacking
detection, which makes it difficult to detect cryptojacking
using a static analysis technique [39], [43]. An instance of
code obfuscation is presented in Listing 5, and the entire heap
graph of the corresponding code is presented in Figure 8 (b).

Listing 5: Example code for obfuscating the script code.
1 var _0x532b=[{_0x462888[“push”](_0x462888[“shift”] ());}...];

Blacklisting based approaches, particularly when utilizing
the script code of cryptojacking as a blacklist, may fail
to detect code-obfuscated cryptojacking websites. Since
CIRCUIT leverages memory heap information rather than
script code, we can detect cryptojacking websites regardless
of script code obfuscation.

E2: Modifying external server link. This technique by-
passes cryptojacking detection by changing the link to load
the cryptojacking script code to a random value. In extreme
cases, the external server link provided by the cryptojacking
vendor is first fetched by the attackers and stored in their
web server, and then the cryptojacking code is loaded on its
own. Here, detection is bypassed by changing the name of
the script file containing the cryptojacking script code to a
generic name such as “jquery.js” or “analysis.js”,
as described in the below sample code (Listing 6).
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(a) Original cryptojacking heap graph (b) Obfuscation
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FIGURE 8: Illustrations of heap graphs that change by various evasion techniques. In (c), the same reference flow (i.e., thread
#0) as in (a) remains identical even if the evasion technique is applied, thus, the edit distance between the two reference flows is
zero. For (b) and (d), changes occurred one by one at the node and edge of the mining reference flow, respectively, but the edit
distance between mining thread #0 in (a) and mining thread “0” in both of (b) and (d) is exceedingly small (the measured edit
distance is 2). Note that the evasion technique for modifying the external server link does not affect the original heap graph.

Listing 6: Example code for modifying external server link.
1 <script src = “/jquery.js”></script>
2 //below code shows the script code in the jquery.js file
3
4 (function () {
5 Mininig script code ...
6 })();

Since the memory heap of the script code was not modified
by this technique, the detection mechanism of CIRCUIT was
not affected by this evasion method.

E3: Limiting resource usage. To disguise a cryptojacking
website as a normal website, attackers sometimes limit the
computing resource usage during cryptocurrency mining,
e.g., by reducing the number of mining threads. This tech-
nique does not change significantly in mining script code,
but it is an option that is often utilized to bypass the detection
method based on resource monitoring. For instance, attackers
can leverage this technique by adding the following simple
option (i.e., throttle) to their script code:

Listing 7: Example code for limiting resource usage.
1 var miner = new Client.Anonymous(“<SITE-KEY>”, {throttle: 0.1});

Here, detection methods based on resource monitoring and
thread counts may fail to detect cryptojacking websites.
However, even if the number of mining threads decreases,
the behavior of existing reference flows is maintained (e.g.,
mining thread #0 in Figure 8 (c)); therefore, CIRCUIT can
precisely detect these kinds of cryptojacking websites.

E4: Utilizing a separate window. Cryptojacking websites
bypass detection by embedding a separate cryptojacking
code, such as iframe, on the website, allowing cryptomin-
ing without a specific script code. In addition, by applying
obfuscation to the embedded cryptojacking code, cryptojack-
ing detection becomes more difficult. The sample code is
presented in Listing 8.

Listing 8: Example code for utilizing a separate window.
1 <iframe width=0 height=0 frameborder=0
2 src=“https://cryptomining.com/mining?key=<SITE-KEY>”>
3 </iframe>

However, as shown in Figure 8 (d), only the start node of the
reference flow is replaced with another object, and there is
no change in the internal behavior. Therefore, CIRCUIT can
detect cryptojacking websites even if this evasion technique
is applied.

C. DISTRIBUTION OF WEBSITES WITH WEB WORKERS
As previously explained in Section II-B, some of the re-
cent approaches to detect cryptojacking have focused on
the fact that cryptojacking websites run several threads. AI
learning using this indicator effectively detects cryptojacking
websites, but several normal websites using multiple web
workers have also been mistakenly detected as cryptojacking
websites. Therefore, we checked the number of web workers
on these websites.

(a) The proportion of multi-threaded websites

Multi-threaded websites (6%)
Single-threaded websites (94%)

(b) The distribution of the number of web workers for multi-threaded websites
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FIGURE 9: Illustration of the proportion of multi-threaded
websites (a) and the distribution of the number of web
workers in multi-threaded websites (b).

Consequently, 11,898 websites out of the total of 204,773
websites were using at least one web worker (i.e., running
multiple threads). Figure 9 (a) shows that websites that use
web workers accounts for only 6% of the total collected
websites. In addition, Figure 9 (b) shows the distribution of
the number of web workers in multi-threaded websites, and it
is observed that a website uses at least one to a maximum of
57 web workers, with an average of 1.4 web workers. Thread
count-based approaches consider the number of web workers
(number of threads) as an indicator; if at least three web
workers are included, then we identify a website as a crypto-
jacking website. Among the 11,898 multi-threaded websites,
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413 websites used three or more web workers (3.6%). When
we additionally checked all 413 websites manually, websites
that were not injected cryptojacking included multimedia
processing or functions, such as Google reCAPTCHA, by
web workers. In summary, the difference in the number of
web workers shows the effect of significantly reducing the
scope range in the overall scale when detecting cryptojacking
websites. However, for precise detection, the number of
web workers cannot be an absolute indicator. Therefore, a
more mature approach, such as CIRCUIT, which performs
behavior-based detection of cryptojacking through memory
heap analysis, is efficient from this perspective.

D. WEBSITES WITH MULTI-SERVICES
To evaluate the effectiveness of CIRCUIT on a website
that provides multiple services using different web work-
ers, we examined websites that use multiple web workers.
However, in our collected dataset, no website was found to
simultaneously provide cryptojacking behavior and normal
services; this implies that a website generally uses multiple
web workers for the same service or only one web worker.

Therefore, for evaluation purpose, we intentionally in-
serted cryptomining code into a website that uses a normal
web worker service to create a complex structured website
that runs multiple web workers in parallel. The cryptomin-
ing script code was injected at the client level using the
developer tool provided by the browser; this does not affect
the web server. Figure 10 shows the generated heap graph
focusing on the identified reference flow after injecting the
cryptomining code of CoinIMP into the “057.ua” website,
which uses a web worker intentionally. In the heap graph,
a web worker created using Google’s reCAPTCHA and a
web worker for cryptomining exist simultaneously, together
with seven other web workers, as shown in Figure 10. In this
example, the existing resource monitoring-based approach
or thread count-based approach determines that this website
runs cryptojacking before inserting the cryptomining code.
In addition, if we obfuscate the cryptomining code and insert
it into a website, blacklisting-based approaches fail to detect
this website as a cryptojacking website.

By contrast, since CIRCUIT considers an individual ref-
erence flow for each web worker, it can detect only web
workers related to cryptojacking, even in a complex struc-
ture. When similarity was measured based on the reference
flow of CoinIMP, the reference flow of the web worker
used in Google’s reCAPTCHA showed an edit distance
of 11.0, whereas the injected cryptomining reference flow
showed an edit distance of 2.0. This is not a characteristic
of Google reCAPTCHA. For instance, when we measured
the similarity between reference flows of “Video.js” [23],
“hls.js” [18], and “vectortaillay.js” [11], which
are generally executed by various web workers, and the
reference flows of CoinIMP, the edit distances were obtained
as 13.0, 18.0, and 32.0, respectively. In conclusion, CIRCUIT
can precisely detect only web workers related to cryptomin-
ing, even on websites with multiple web workers.

V. DISCUSSION
Here we discuss several considerations related to CIRCUIT.

A. CRYPTOJACKING DETECTION BASED ON THE
JAVASCRIPT MEMORY HEAP
Handling relatively heavy tasks in a web environment was
challenging before the introduction of web workers. The dis-
tinction between cryptojacking and normal websites became
ambiguous after introducing web workers; hence, methods
for detecting cryptojacking websites are required. In ad-
dition, cryptojacking websites attempt to avoid detection
through various evasion techniques. Therefore, we focused
on how to flexibly cope with technologies to avoid detection
and how to precisely detect cryptojacking websites. If the
memory area allocated to the website is used, the detection
ability will not be affected unless the evasion technique
directly affects memory. CIRCUIT reduced false positives
in cryptojacking detection and showed robust results com-
pared with the existing detection methods. In addition, the
analysis results of the evasion techniques and distribution
of web workers in the overall web environment proved the
necessity and efficiency of approaching memory rather than
simply depending on the script code, resource consumption
monitoring, or several threads. The detection method using
this memory area can flexibly cope with detection bypass
technologies, which hinder cryptojacking detection, and will
become an important insight for detection methods focusing
on accuracy.

B. LIMITATIONS
As CIRCUIT detects cryptojacking websites based on the
JavaScript memory heap, it can flexibly cope with detection
bypass techniques that do not directly affect the memory
heap. However, in some cases, CIRCUIT can report false
alarms.

• Object encapsulation. Mining-related objects can be
abnormally encapsulated; thus, the reference flow can
be extremely long in terms of memory, resulting in an
extensive editing distance when measuring the similar-
ity between reference flows.

• Extremely short reference flow. If the reference flow
for a web worker is extremely short, the edit distance
between two reference flows with different behaviors
can be measured as a very small integer.

A specific reference flow of a web worker found at the site1

had only three nodes and two edges. If an exceedingly short
cryptojacking reference flow is added later, it can lead to false
positives. Furthermore, we confirmed that the reference flow
of a web worker generated at the site 2 has 41 nodes and
40 edges. If the reference flow containing the cryptojacking
behavior becomes long because of abnormal encapsulation,
this can lead to false negatives. In addition, the detection

1https://www.acs.org/
2https://www.chestnet.org/
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FIGURE 10: Example of a website heap graph that operates multiple services including cryptomining.

of a new cryptojacking code, i.e., unknown cryptojacking,
is outside the detection range of CIRCUIT. We are fully
aware of this problem, and as a possible solution, we con-
sidered taint analysis using the data flow of the SITE-KEY.
However, we do not have a clear solution as yet; hence we
leave this as future work. Finally, CIRCUIT cannot be used
to detect Wasm-based cryptojacking websites. Thus far, it has
been difficult to understand the memory structure of the web
assembly, thus making the direct application of CIRCUIT
challenging. However, if sufficient information about the
memory structure is provided, the same CIRCUIT algorithm
used in JavaScript can be applied to the web assembly.

VI. CONCLUSION

Increasing cryptocurrency values have led to an increase in
cryptojacking, which utilizes mining maliciously. Therefore,
we propose CIRCUIT, a precise approach for detecting cryp-
tojacking websites based on the JavaScript memory heap.
We define a reference flow, which can represent script code
behavior for each thread on a website and utilize the ref-
erence flow to detect websites with cryptojacking behav-
iors. CIRCUIT successfully detected 1,813 cryptojacking
websites from 300K real-world websites. We demonstrated
the efficacy of CIRCUIT by (1) precisely detecting cryp-
tojacking websites using evasion techniques and (2) clearly
distinguishing normal websites with similar characteristics
to cryptojacking websites. In addition, the model of evasion
techniques that we discovered and the distribution of web
workers within a website can provide new insights for cryp-
tojacking detection.
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