

Seunghoon Woo

Assistant Professor (@KOREA UNIVERSITY), Chief Scientist (@LABRADOR LABS)

seunghoonwoo@korea.ac.kr | https://wooseunghoon.github.io

SOFTWARE SECURITY; SOFTWARE VULNERABILITY DETECTION; SOFTWARE COMPOSITION ANALYSIS; CODE CLONE DETECTION.

EARNED DEGREES

• M.S. & Ph.D. in Computer Science and Engineering, Korea University (GPA 4.45/4.5)	Sep 2016 - Aug 2022
• B.S. in Computer Science and Engineering, Korea University (GPA 4.22/4.5)	Mar 2010 - Feb 2016

DOCTORAL DISSERTATION

• Detecting Software Vulnerabilities for Mitigating Risks of Open-Source Reuse (Advisor: Prof. Heejo Lee) Aug 2022

WORKING EXPERIENCES

Korea University, Assistant Professor		Sep 2023 - Present
LABRADOR LABS Inc., Chief Scientist		May 2022 - Present
• Center for Software Security and Assurance (CSSA), Research Pro	ofessor	Sep 2022 - Aug 2023
 National University of Singapore, Research Intern 		Dec 2016 - Feb 2017
Samsung Electronics, Student Intern & Employee	Jun 2014 - Aug 2014,	Dec 2015 - Jan 2016
DoDotDo (startup), Core Developer		Jan 2015 - Sep 2015

Publications - International Conference

[1]	V1SCAN: Discovering 1-day Vulnerabilities in Reused C/C++ Open-source Software Components
	Using Code Classification Techniques
	Seunghoon Woo, Eunjin Choi, Heejo Lee, and Hakjoo Oh
	Security 2023: 32nd USENIX Security Symposium (Top-tier conference)
	Anaheim, USA, Aug 2023 (Acceptance rate: 29.0%)
[2]	MOVERY: A Precise Approach for Modified Vulnerable Code Clone Discovery from Modified Open-
	Source Software Components
	Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee
	Security 2022: 31st USENIX Security Symposium (Top-tier conference)
	Boston, USA, Aug 2022 (Acceptance rate: 18.0%)
[3]	L2Fuzz: Discovering Bluetooth L2CAP Vulnerabilities Using Stateful Fuzz Testing
	Haram Park, Carlos Nkuba Kayembe, Seunghoon Woo, and Heejo Lee
	DSN 2022: 52nd IEEE/IFIP International Conference on Dependable Systems and Networks

 Baltimore, USA, Jun 2022 (Acceptance rate: 18.7%)
 [4] DICOS: Discovering Insecure Code Snippets from Stack Overflow Posts by Leveraging User Discussions Hyunji Hong, Seunghoon Woo, and Heejo Lee ACSAC 2021: Annual Computer Security Applications Conference Virtual, Dec 2021 (Acceptance rate: 24.5%)

- [5] V0Finder: Discovering the Correct Origin of Publicly Reported Software Vulnerabilities Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich Security 2021: 30th USENIX Security Symposium (Top-tier conference) Virtual, Aug 2021 (Acceptance rate: 19.0%)
- [6] OctoPoCs: Automatic Verification of Propagated Vulnerable Code Using Reformed Proofs of Concept Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong, and Heejo Lee DSN 2021: 51st IEEE/IFIP International Conference on Dependable Systems and Networks Virtual, Jun 2021 (Acceptance rate: 16.3%)
- [7] CENTRIS: A Precise and Scalable Approach for Identifying Modified Open-Source Software Reuse Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh ICSE 2021: 43rd International Conference on Software Engineering (Top-tier conference) Virtual, May 2021 (Acceptance rate: 22.4%)
- [8] VUDDY: A Scalable Approach for Vulnerable Code Clone Discovery Seulbae Kim, <u>Seunghoon Woo</u>, Heejo Lee, and Hakjoo Oh S&P 2017: 38th IEEE Symposium on Security and Privacy (Top-tier conference) San Jose, USA, May 2017 (Acceptance rate: 12.9%)

PUBLICATIONS - INTERNATIONAL JOURNAL

- ZMAD: Lightweight Model-based Anomaly Detection for the Structured Z-Wave Protocol Carlos Nkuba Kayembe, Seunghoon Woo, Heejo Lee, Sven Dietrich IEEE ACCESS (SCIE/IF: 3.476), Jun 2023
- [2] CIRCUIT: A JavaScript Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites Seunghoon Woo*, Hyunji Hong*, Sunghan Park*, Jeongwook Lee, and Heejo Lee (* contributed equally) IEEE ACCESS (SCIE/IF: 3.476), Sep 2022
- [3] xVDB: A High-Coverage Approach for Constructing a Vulnerability Database Hyunji Hong, <u>Seunghoon Woo</u>, Eunjin Choi, Jihyun Choi, and Heejo Lee IEEE ACCESS (SCIE/IF: 3.476), Aug 2022

PUBLICATIONS - DOMESTIC

- Blockchain Security Threats and Analysis in the Web 3.0 Era
 Seunghoon Woo, Geonwoo Lee, Taejun Lee, Yunseong Choi, Heejo Lee, Kyeongsik Min, and Jinsang Park KISA INSIGHT, 2023
- [2] Trends in Open-source Software Vulnerability Analysis and Detection Technology Seunghoon Woo, Hyunji Hong, and Heejo Lee OSIA Standards & Technology Review, 2022
- [3] Open-source Software Vulnerability Detection Techniques for Enhancing Supply Chain Security Hyunji Hong, Seunghoon Woo, and Heejo Lee Review of KIISC, 2022

Patent

 METHOD FOR IDENTIFYING OPEN-SOURCE SOFTWARE COMPONENTS AT THE SOURCE-CODE LEVEL Heejo Lee and Seunghoon Woo REGISTRATION, Korea (10-2476358), Dec 2022

- [2] METHOD FOR IDENTIFYING OPEN-SOURCE SOFTWARE COMPONENTS AT THE SOURCE-CODE LEVEL Heejo Lee and Seunghoon Woo APPLICATION, US (17525126), Nov 2021
- [3] METHOD FOR IDENTIFYING OPEN-SOURCE SOFTWARE COMPONENTS AT THE SOURCE-CODE LEVEL Heejo Lee and <u>Seunghoon Woo</u> <u>APPLICATION</u>, Europe (EP21202849.2), Oct 2021

STANDARD

• Structured Software Vulnerability Database Information Expression for Vulnerability Detection and Resolution

Heejo Lee, Seunghoon Woo, Hyunji Hong, Choonsik Park, and Yunseong Choi Korea (TTAK.KO-12.0384), Jun 2022

TECHNOLOGY TRANSFER

• METHOD FOR IDENTIFYING OPEN-SOURCE SOFTWARE COMPONENTS AT THE SOURCE-CODE LEVEL Technology Transfer to LABRADOR LABS, Dec 2022

PROJECTS (SELECTED)

- Development of SBOM Technologies for Securing Software Supply Chains (IITP/MSIT) Researcher
 Apr 2022 - Present
- Development of Automated Vulnerability Discovery Technologies for Blockchain Security (IITP/MSIT)
 Project Manager & Researcher & Developer
 International Joint Research (ETH Zurich)
 Jun 2019 Dec 2022

 *2022 IITP outstanding performance project
- The Intelligent IoT Integrator (I3): LA Smart City Project
 Researcher & Developer
 International Joint Research (City of LA, University of Southern California, Amazon, etc.)
 Nov 2017 - Present
- Verifying Open-Source Software Reliability for Reinforcing Operating System Security (NSR) Researcher & Developer Apr 2020 - Oct 2020
- Examining Software Vulnerabilities on Platform for IoT-based Home Appliance Consulting Service (KETI) Researcher & Analyst Feb 2020 - Apr 2020
- Development of DNS-based Lightweight Framework for Addressing Abnormal Network Behaviors (KISTI) Researcher & Developer May 2018 - Oct 2018
- A Study of a DDoS-resilient Network Architecture through Traffic Classification and Isolation (US ONR)
 Project Manager

International Joint Research (ETH Zurich, Office of Naval Research) Sep 2017 - Sep 2019 • Development of Vulnerability Discovery Technologies for IoT Software Security (IITP/MSIT) Researcher & Developer

International Joint Research (ETH Zurich, Carnegie Mellon University, University of Oxford) Feb 2016 - May 2018

REAL-WORLD SOFTWARE CONTRIBUTIONS (SELECTED)

	VUDDY	CENTRIS	V0Finder	OctoPoCs	DICOS	L2Fuzz	MOVERY	
Detection tool			(Security 2021)					Total
#Reported vulnerabilities	15	5	20	3	4	7	11	65
 LibGDX, Resolved see Detected a possible remo Android, Resolved see Discovered DoS vulneral 	ote code exe curity vulne pilities in An	cution vulne rabilities in droid Blueto	Android Bluet	x • • • • •	ˈgithub.com/lib	ogdx/libgdx)	Dec	r 2022 c 2021
 Apple, Resolved secur Discovered DoS vulneral XPDF, Resolved secu 	pilities in Ap	ple tvOS, wa			nacOS Montere	ey Bluetooth	stack	c 2021 c 2020
 Detected a stack consum Gif2png, Corrected C¹ Corrected wrong CVE in 	VE informa	tion		ww.xpdfread	ler.com)		Feb	o 2020
• Redis, Resolved secur Detected a possible stac		•		,	//github.com/	redis/redis)	Feb	o 2020
• Stepmania, Resolved Detected a improper val	•		•	-	,	stepmania)	Sep	o 2019
• Godot, Resolved secu Detected a possible remo	5		rability in Godo	ot (https://gi	thub.com/god	otengine/goo		l 2019

OPEN-SOURCE SOFTWARE ARTIFACTS

- [1] V1SCAN, A tool for discovering 1-day security vulnerabilities (Security 2023) https://github.com/WOOSEUNGHOON/V1SCAN-public
- [2] **MOVERY**, A tool for discovering propagated vulnerable codes (Security 2022) https://github.com/WOOSEUNGHOON/MOVERY-public
- [3] **V0Finder**, A tool for discovering the correct origin of software vulnerabilities (Security 2021) https://github.com/WOOSEUNGHOON/V0Finder-public
- [4] **CENTRIS**, A tool for identifying open-source software components (ICSE 2021) https://github.com/WOOSEUNGHOON/CENTRIS-public

TALKS AND PRESENTATIONS (SELECTED)

• USENIX Security 2023, Paper Presentation	Aug 2023
V1SCAN: Discovering 1-day Vulnerabilities in Reused C/C++ Open-source Software Components	Anaheim, USA
Using Code Classification Techniques	
NetSec-KR 2023	Apr 2023

Discovering Open-source Software Vulnerabilities for Supply Chain Security

Seoul, Korea

Blockchain Grand Week Vulnerabilities and Security in Blockchain Software	Dec 2022 <i>Busan</i> , Korea
• UNIST Seminar Vulnerabilities and Security in Open-Source Software	Dec 2022 Virtual
• USENIX Security 2022, Paper Presentation MOVERY: A Precise Approach for Modified Vulnerable Code Clone Discovery from Modified Open-Source Software Components	Aug 2022 <i>Boston</i> , USA
• Supply Chain Security Workshop Open Source Vulnerability Detection for Supply Chain Security	Jul 2022 <i>Seoul</i> , Korea
 IoTcube Conference 2021 Analysis of Reused Open-Source Software Components for Software Bill of Materials 	Aug 2021 <i>Seoul</i> , Korea
• USENIX Security 2021, Paper Presentation V0Finder: Discovering the Correct Origin of Publicly Reported Software Vulnerabilities	Aug 2021 <i>Virtual</i>
• ICSE 2021, Paper Presentation CENTRIS: A Precise and Scalable Approach for Identifying Modified Open-Source Software Reuse	May 2021 <i>Virtual</i>
KIISC Online Short Course Verification Technology for Open-Source Software Security	Nov 2020 <i>Virtual</i>
 Workshop among Asian Information Security Labs (WAIS) 2018 Identifying Constituent OSS in Software through Code Similarity Detection 	Jan 2018 <i>Wuhan</i> , China
• IEEE S&P Poster 2017 , Poster Presentation IoTcube: an automated analysis platform for finding security vulnerabilities	May 2017 <i>San Jose</i> , USA
External Reviewer	
 ACM Transactions on Software Engineering and Methodology Software: Practice and Experience IEEE Transactions on Vehicular Technology Journal of Communications and Networks 	2023 2023 2022 2021